Citation: Jens Bürger, Alireza Goudarzi, Darko Stefanovic, Christof Teuscher. Computational capacity and energy consumption of complex resistive switch networks[J]. AIMS Materials Science, 2015, 2(4): 530-545. doi: 10.3934/matersci.2015.4.530
| [1] | Chang T, Yang Y, LuW(2013) Building Neuromorphic Circuits with Memristive Devices. Circuits, Systems Magazine, IEEE 13: 56-73. |
| [2] |
Crutchfield JP, Ditto WL, Sinha S (2010) Introduction to focus issue: intrinsic, designed computation: information processing in dynamical systems-beyond the digital hegemony. Chaos: An Interdisciplinary Journal of Nonlinear Science 20: 037101. doi: 10.1063/1.3492712
|
| [3] |
Hasegawa T, Ohno T, Terabe K, et al. (2010) Learning Abilities Achieved by a Single Solid-State Atomic Switch. Adv Mater 22: 1831-1834. doi: 10.1002/adma.200903680
|
| [4] |
Avizienis AV, Sillin HO, Martin-Olmos C, et al. (2012) Neuromorphic atomic switch networks. PLoS ONE 7: e42772. doi: 10.1371/journal.pone.0042772
|
| [5] |
Sillin HO, Aguilera R, Shieh HH, et al. (2013) A theoretical, experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24: 384004. doi: 10.1088/0957-4484/24/38/384004
|
| [6] |
Stieg AZ, Avizienis AV, Sillin HO, et al. (2012) Emergent Criticality in Complex Turing B-Type Atomic Switch Networks. Adv Mater 24: 286-293. doi: 10.1002/adma.201103053
|
| [7] |
Demis EC, Aguilera R, Sillin HO, et al. (2015) Atomic switch networks - nanoarchitectonic design of a complex system for natural computing. Nanotechnology 26: 204003. doi: 10.1088/0957-4484/26/20/204003
|
| [8] | Sporns O (2011) Networks of the Brain. The MIT Press, Cambridge, MA. |
| [9] |
Chua L (1971) Memristor - The missing circuit element. Circuit Theory, IEEE Transactions on 18: 507-519. doi: 10.1109/TCT.1971.1083337
|
| [10] |
Strukov DB, Snider GS, Stewart DR, et al. (2008) The missing memristor found. Nature 453: 80-83. doi: 10.1038/nature06932
|
| [11] |
Jo SH, Chang T, Ebong I, et al. (2010) Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett 10: 1297-1301. doi: 10.1021/nl904092h
|
| [12] |
Kim S, Du C, Sheridan P, et al. (2015) Experimental Demonstration of a Second-Order Memristor, Its Ability to Biorealistically Implement Synaptic Plasticity. Nano Lett 15: 2203-2211. doi: 10.1021/acs.nanolett.5b00697
|
| [13] |
Ohno T, Hasegawa T, Tsuruoka T, et al. (2011) Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater 10: 591-595. doi: 10.1038/nmat3054
|
| [14] | Sah MP, Chua LO (2014) Brains Are Made of Memristors. IEEE Circuits, Systems Magazine 14: 12-36. |
| [15] | Bürger J, Teuscher C (2013) Variation-tolerant Computing with Memristive Reservoirs. Nanoscale Architectures (NANOARCH), 2013 IEEE/ACM International Symposium on, 1-6. |
| [16] | Bürger J, Goudarzi A, Stefanovic D, et al. (2015) Hierarchical Composition of Memristive Networks for Real-Time Computing. Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International Symposium on, 33-38. |
| [17] | Kulkarni MS, Teuscher C (2012) Memristor-based Reservoir Computing. Nanoscale Architectures (NANOARCH), 2012 IEEE/ACM International Symposium on, 226-232. |
| [18] | Jaeger H (2001) The “echo state” approach to analysing, training recurrent neural networks - with an Erratum note. GMD Report 148, German National Research Center for Information Technology. |
| [19] |
Maass W, Natschläger T, Markram H (2002) Real-time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Comput 14: 2531-2560. doi: 10.1162/089976602760407955
|
| [20] |
Hasegawa T, Nayak A, Ohno T, et al. (2011) Memristive operations demonstrated by gap-type atomic switches. Appl Phys A 102: 811-815. doi: 10.1007/s00339-011-6317-0
|
| [21] |
Chang T, Jo SH, Lu W (2011) Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5: 7669-76. doi: 10.1021/nn202983n
|
| [22] |
Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl Phys A 94: 515-519. doi: 10.1007/s00339-008-4975-3
|
| [23] |
Tamura T, Hasegawa T, Terabe K, et al. (2006) Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction. Jpn J Appl Phys 45: L364-L366. doi: 10.1143/JJAP.45.L364
|
| [24] | Chang T, Jo SH, Kim KH, et al. (2011) Synaptic behaviors, modeling of a metal oxide memristive device. Appl Phys A 102: 857-863. |
| [25] |
Gaba S, Sheridan P, Zhou J, et al. (2013) Stochastic memristive devices for computing, neuromorphic applications. Nanoscale 5: 5872-5878. doi: 10.1039/c3nr01176c
|
| [26] |
Ohno T, Hasegawa T, Nayak A, et al. (2011) Sensory, short-term memory formations observed in a Ag2S gap-type atomic switch. Appl Phys Lett 99: 203108. doi: 10.1063/1.3662390
|
| [27] | Stieg AZ, Avizienis AV, Sillin HO, et al. (2014) Self-organized atomic switch networks. Jpn J Appl Phys 53: 0-6. |
| [28] | Litovski V, Zwolinski M (1997) VLSI Circuit Simulation and Optimization. Chapman & Hall, London, UK. |
| [29] |
Rabinovich M, Huerta R, Laurent G (2008) Transient Dynamics for Neural Processing. Science 321: 48-50. doi: 10.1126/science.1155564
|
| [30] |
Buonomano DV, Maass W (2009) State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 10: 113-125. doi: 10.1038/nrn2558
|
| [31] |
Bertschinger N, Natschläger T (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput 16: 1413-1436. doi: 10.1162/089976604323057443
|
| [32] |
Langton CG (1990) Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena 42: 12-37. doi: 10.1016/0167-2789(90)90064-V
|
| [33] |
Snyder D, Goudarzi A, Teuscher C (2013) Computational capabilities of random automata networks for reservoir computing. Phys Rev E 87: 042808. doi: 10.1103/PhysRevE.87.042808
|
| [34] | Bishop CM (2006) Pattern Recognition, Machine Learning (Information Science, Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA. |
| [35] |
Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? NeuroImage 52: 766-776. doi: 10.1016/j.neuroimage.2010.01.071
|
| [36] |
Shah MM, Hammond RS, Hoffman DA (2010) Dendritic ion channel trafficking , plasticity. Trends Neurosci 33: 307-316. doi: 10.1016/j.tins.2010.03.002
|