Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Surface plasmon resonance imaging of the conversion of clustered DNA lesions into double strand breaks by Fpg protein

1 Univ. Grenoble Alpes, UMR 5250, F-38000 Grenoble, France CNRS, DCM UMR 5250, F-38000 Grenoble, France;
2 Univ. Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France CEA, INAC, SPrAM, F-38000 Grenoble, France CNRS, SPrAM, F-38000 Grenoble, France;
3 Current address: DKMS German Bone Marrow Donor Center, 72072 Tübingen, Germany

Topical Section: Biomolecular Materials: DNA, RNA, proteins, peptides, lipids

Ionizing radiations induce clustered damage sites known to be severely challenging for the cell's repair machinery. In the present study, we have grafted on a biochip four synthetic oligonucleotide duplexes containing either a single 8-oxoguanine, a single 2'-deoxyribose abasic site or two different clustered damages containing these two lesions on opposite strands. Using a SPR imaging-based DNA array, we qualitatively observed the hierarchy of lesion processing by the base excision repair (BER) enzyme Fpg (Formamidopyrimidine (fapy)-DNA glycosylase). We could notably show that Fpg can convert a cluster of lesions into a potentially lethal double strand break (DSB) and demonstrate that SPR imaging is suitable to investigate the incision steps occurring during the repair process.
  Article Metrics

Keywords surface plasmon resonance imaging; DNA double strand break; Fpg; 8-oxoguanine; abasic site; DNA cluster lesion

Citation: Muriel Jourdan, Julia Pingel, Arnaud Buhot, Thierry Livache, Jean-François Constant. Surface plasmon resonance imaging of the conversion of clustered DNA lesions into double strand breaks by Fpg protein. AIMS Materials Science, 2015, 2(4): 473-483. doi: 10.3934/matersci.2015.4.473


  • 1. Magnander K,Elmroth K(2012)Biological consequences of formation and repair of complex DNA damage.Cancer Lett 327: 90-96.
  • 2. Eccles LJ, O'Neill P, Lomax ME (2011) Delayed repair of radiation induced clustered DNA damage: Friend or foe? MutatRes 711: 134-141.
  • 3. Sage E, Harrison L (2011) Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival.MutatRes 711: 123-133.
  • 4. Okayasu R (2012) Repair of DNA damage induced by accelerated heavy ions-a mini review.IntJCancer 130: 991-1000.
  • 5. Georgakilas AG, O'Neill P, Stewart RD (2013) Induction and repair of clustered DNA lesions: what do we know so far?RadiatRes 180: 100-109.
  • 6. Pouget JP, Frelon S,Ravanat JL,et al. (2002) Formation of modified DNA bases in cells exposed either to gamma radiation or to high-LET particles.RadiatRes 157: 589-595.
  • 7. Cadet J,Douki T,Ravanat JL(2008) Oxidatively generated damage to the guanine moiety of DNA: mechanic aspects and formation in cells.AccChemRes 41: 1075-1083.
  • 8. Frelon S,Douki T,Ravanat JL,et al. (2000) High-performance liquid chromatography-tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA.ChemResToxicol 13: 1002-1010.
  • 9. Memisoglu A, Samson L(2000) Base excision repair in yeast and mammals.MutatRes 451: 39-51.
  • 10. Wilson DM, Sofinowski TM and McNeill DR (2003) Repair mechanisms for oxidative DNA damage.FrontBiosci 8:963-981.
  • 11. Shikazono N,Noguchi M,Fujii K,et al. (2009) The Yield, processing, and biological consequences of custered DNA camage induced by ionizing radiation.JRadiatRes 50: 27-36.
  • 12. Blaisdell JO, Wallace SS (2001) Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli.ProcNatlAcadSciUSA 98: 7426-7430.    
  • 13. D'Souza DI, Harrison L(2003) Repair of clustered uracil DNA damages in Escherichia coli.Nucleic Acids Res 31: 4573-4581.
  • 14. Lomax ME,Cunniffe S,O'Neill P(2004) Efficiency of repair of an abasic site within DNA clustered damage sites by mammalian cell nuclear extracts.DNA Repair 43: 11017-11026.
  • 15. Pearson CG,Shikazono N,Tacker J,et al. (2004) Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site.Nucleic Acids Res 32: 263-270.    
  • 16. Budworth H,Dianova II,Podust VN,et al. (2002) Repair of clustered DNA lesions.JBiolChem 277: 21300-21305.
  • 17. Tian K,McTigue M, de los Santos C(2002) Sorting the consequences of ionizing radiation: processing of 8-oxoguanine/abasic site lesions.DNA Repair 1: 1039-1049.
  • 18. Corne C, Fiche JB,Gasparutto D,et al. (2008) SPR imaging for label-free multiplexed analyses of DNA N-glycosylase interactions with damage DNA duplexes.Analyst 133: 1036-1045.    
  • 19. David-Cordonnier MH, Laval J, O'Neill P (2001) Recognition and kinetics for excision of a base lesion within clustered DNA damage by the Escherichia coli proteins Fpg and Nth.Biochemistry 40: 5738-5746.    
  • 20. David-Cordonnier MH, Laval J, O'Neill P(2000) Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins.JBiolChem 275: 11865-11873.
  • 21. Harisson L, Hatahet Z, Wallace SS (1999) In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.JMolBiol 290: 667-684.
  • 22. Zálešák J,Lourdin M,Krejčί L,et al. (2014) Structure and dynamics of DNA duplexes containing a cluster of mutagenic 8-oxoguanine and abasic site lesions.JMolBiol 426: 1524-1538.
  • 23. BhartiSK,Varshney U (2010) Analysis of the impact of a uracil DNA glycosylaseattenuated in AP-DNA binding in maintenance of the genomic integrity in Escherichia coli.Nucleic Acids Res 38: 2291-2301    


Copyright Info: © 2015, Muriel Jourdan, Jean-François Constant, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved