Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Meso-scale computational investigation of polyurea microstructure and its role in shockwave attenuation/dispersion

Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA

In a number of recently published studies, it was demonstrated that polyurea possesses a high shockwave-mitigation capacity, i.e. an ability to attenuate and disperse shocks. Polyurea is a segmented thermoplastic elastomer which possesses a meso-scale segregated microstructure consisting of (high glass-transition temperature, Tg) hydrogen-bonded discrete hard domains and a (low Tg) contiguous soft matrix. Details of the polyurea microstructure (such as the extent of meso-segregation, morphology and the degree of short-range order and crystallinity within the hard domains) are all sensitive functions of the polyurea chemistry and its synthesis route. It has been widely accepted that the shockwave-mitigation capacity of polyurea is closely related to its meso-phase microstructure. However, it is not presently clear what microstructure-dependent phenomena and processes are responsible for the superior shockwave-mitigation capacity of this material. To help identify these phenomena and processes, meso-scale coarse-grained simulations of the formation of meso-segregated microstructure and its interaction with the shockwave is analyzed in the present work. It is found that shockwave-induced hard-domain densification makes an important contribution to the superior shockwave-mitigation capacity of polyurea, and that the extent of densification is a sensitive function of the polyurea soft-segment molecular weight. Specifically, the ability of release waves to capture and neutralize shockwaves has been found to depend strongly on the extent of shockwave-induced hard-domain densification.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Polyurea; Meso-scale; Coarse-grained simulations; Shockwave attenuation; shockwave dispersion

Citation: Mica Grujicic, Jennifer Snipes, S. Ramaswami. Meso-scale computational investigation of polyurea microstructure and its role in shockwave attenuation/dispersion. AIMS Materials Science, 2015, 2(3): 163-188. doi: 10.3934/matersci.2015.3.163

References

  • 1. Grujicic M, Snipes JS, Ramaswami S, et al. (2013) Coarse-Grained Molecular-Level Analysis of Polyurea Properties and Shockwave-Mitigation Potential. J Mater Eng Perform 22: 1964-1981.    
  • 2. Castagna AM, Pangon A, Choi T, et al. (2012) The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas. Macromol 45: 8438-8444.    
  • 3. Grujicic M, Bell WC, Pandurangan B, et al. (2011) Fluid/structure interaction computational investigation of the blast-wave mitigation efficacy of the advanced combat helmet. J Mater Eng Perform 20: 877-893.    
  • 4. Grujicic A, LaBerge M, Grujicic M, et al. (2012) Potential Improvements in Shockwave-Mitigation Efficacy of A Polyurea-Augmented Advanced Combat Helmet: A Computational Investigation. J Mater Eng Perform 21: 1562-1579.    
  • 5. Grujicic M, Bell WC, Pandurangan B, et al. (2010) Blast-wave Impact-Mitigation Capability of Polyurea When Used as Helmet Suspension Pad Material. Mater Des 31: 4050-4065.    
  • 6. Grujicic M, Arakere A, Pandurangan B, et al. (2012) Computational Investigation of Shockwave-Mitigation Efficacy of Polyurea when used in a Combat Helmet: A Core Sample Analysis. Multidisc Model Mater Struc 8: 297-331.    
  • 7. Bogoslovov RB, Roland CM, Gamache RM (2007) Impact-induced glass-transition in elastomeric coatings. App Phys Let 90: 221910.    
  • 8. Grujicic M, Pandurangan B, He T, et al. (2010) Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition. Mater Sci Eng A 527: 7741-7751.    
  • 9. Grujicic M, Pandurangan B, King AE, et al. (2011) Multi-length scale modeling and analysis of microstructure evolution and mechanical properties in polyurea. J Mater Sci 46: 1767-1779.    
  • 10. Grujicic M, He T, Pandurangan B (2011) Development and parameterization of an equilibrium material model for segmented polyurea. Multidisc Model Mater Struc 7: 96-114.    
  • 11. Grujicic M, He T, Pandurangan B, et al. (2011) Development and Parameterization of a Time-Invariant (Equilibrium) Material Model for Segmented Elastomeric Polyureas. J Mater: Des Appl 225: 182-194.
  • 12. Grujicic M, He T, Pandurangan B, et al. (2011) Experimental characterization and material-model development for microphase-segregated polyurea : an overview J Mater Eng Perform 21: 2-16.
  • 13. Grujicic M, Pandurangan B, Bell WC, et al. (2011) Molecular-level simulations of shockwave generation and propagation in polyurea. Mater Sci Eng A 528: 3799-3808.    
  • 14. Grujicic M, Yavari R, Snipes JS, et al. (2012) Molecular-Level Computational Investigation of Shockwave Mitigation Capability of Polyurea. J Mater Sci 47: 8197-8215.    
  • 15. Grujicic M, d’Entremont BP, Pandurangan B, et al. (2012) Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance. J Mater Eng Perform 21: 2024-2037.    
  • 16. Grujicic M, Pandurangan B (2012) Meso-Scale Analysis of Segmental Dynamics in Micro-phase Segregated Polyurea. J Mater Sci 47: 3876-3889.    
  • 17. Grujicic M, Ramaswami S, Snipes JS, et al. (2014) Multi-scale computation-based design of nano-segregated polyurea for maximum shockwave-mitigation performance. AIMS Mater Sci 1: 15-27.    
  • 18. Amorphous Cell Datasheet. Accelrys, Inc., 2014. Available from: http://accelrys.com/products/datasheets/amorphous-cell.pdf.
  • 19. Sun H (1998) COMPASS: An ab-initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds. J Phys Chem B 102: 7338.    
  • 20. Sun H, Ren P, Fried JR. (1998) The Compass Force-field: Parameterization and Validation for Phosphazenes. Comput Theor Polym Sci 8: 229-246.    
  • 21. Grujicic M, Snipes JS, Ramaswami S, et al. (2014) Meso-Scale Computational Investigation of Shock-Wave Attenuation by Trailing Release-Wave in Different Grades of Polyurea. J Mater Eng Perf 23: 49-64.    
  • 22. Grujicic M, Yavari R, Snipes JS, et al. (2014) All-Atom Molecular-Level Computational Simulations of Planar Longitudinal Shockwave Interactions with Polyurea, Soda-Lime Glass and Polyurea/Glass Interfaces. Multidisc Model Mater Struc 10: 474-510.    
  • 23. Grujicic M, Yavari R, Snipes JS, et al. (2014) All-Atom Molecular-Level Computational Analyses of Polyurea/Fused-Silica Interfacial Decohesion Caused by Impinging Tensile Stress-Waves. Int J Struct Integr 5: 339-367.    
  • 24. Discover Datasheet. Accelrys, Inc. (2014) Available from: http://accelrys.com/products/datasheets/discover.pdf.
  • 25. Amirkhizi AV, Isaacs J, McGee J, et al. (2006) An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Phil Mag 86: 5847-5866.    
  • 26. Arman B, Reddy AS, Arya G (2012) Viscoelastic properties and shockwave response of coarse-grained models of multi-block versus di-block co-polymers: insights into dissipative properties of polyurea. Macromol 45: 3247-3255.    
  • 27. Davison L (2008) Fundamentals of Shockwave Wave Propagation in Solids, Berlin, Germany: Springer-Verlag.
  • 28. Grujicic M, d’Entremont BP, Pandurangan B, et al. (2012) A Study of the Blast-induced Brain White-Matter Damage and the Associated Diffuse Axonal Injury. Multidisc Model Mater Struc 8: 213-245.    
  • 29. Grujicic M, Pandurangan B, Bell WC, et al. (2011) Application of a Dynamic-mixture Shockwave Model to the Metal-matrix Composite Materials. Mater Sci Eng A 528: 8187-8197.    
  • 30. Grujicic M, Bell WC, Pandurangan B, et al. (2011) Computational Investigation of Structured Shocks in Al/SiC-particulates Metal Matrix Composites. Multidisc Model Mater Struc 7: 469-497.    
  • 31. Garrett JT, Runt J, Lin JS (2000) Microphase Separation of Segmented Poly (urethane urea) Block Copolymers. Macromol 33: 6353-6359.    
  • 32. Garrett JT, Lin JS, Runt J (2002) Influence of Preparation Conditions on Microdomain Formation in Poly(urethane urea) Block Copolymers. Macromol 35: 161-168.    
  • 33. Castagna AM, Pangon A, Dillon GP, et al. (2013) Effect of Thermal History on the Microstructure of a Poly(tetramethylene oxide)-Based Polyurea. Macromol 46: 6520-6527.    
  • 34. Pangon A, Dillon GP and Runt J (2014) Influence of mixed soft segments on microphase separation of polyurea elastomers. Polymer 55: 1837-1844.    
  • 35. He Y, Zhang X and Runt J (2014) The role of diisocyanate structure on microphase separation of solution polymerized polyureas. Polymer 55: 906-913.    
  • 36. Choi T, Fragiadakis D, Roland C M, et al. (2012) Microstructure and Segmental Dynamics of Polyurea under Uniaxial Deformation. Macromol 45: 3581-3589.    
  • 37. Roland CM, Fragiadakis D, Gamache RM (2010) Elastomer-steel laminate armor. Compos Struct 92: 1059-1064.    
  • 38. Amini M R, Isaacs J, Nemat-Nasser S (2010) Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech Mater 42: 628-639.    
  • 39. Cho H, Bartyczak S, Mock W Jr., et al. (2013) Dissipation and resilience of elastomeric segmented copolymers under extreme strain rates. Polymer 54: 5952-5964.    
  • 40. Cho H, Rinaldi R and Boyce M C (2013) Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyurea. Soft Matter 9: 6319-6330.    
  • 41. Grujicic M, Yavari R, Snipes J S, et al. (2015) Improvements in the blast-mitigation performance of light-tactical-vehicle side-vent-channel solution using aluminum-foam core sandwich structures. J Adv Mech Eng 2: 22-55.

 

This article has been cited by

  • 1. Mica Grujicic, Jennifer Snipes, Ramin Yavari, S. Ramaswami, Rohan Galgalikar, Computational investigation of foreign object damage sustained by environmental barrier coatings (EBCs) and SiC/SiC ceramic-matrix composites (CMCs), Multidiscipline Modeling in Materials and Structures, 2015, 11, 2, 238, 10.1108/MMMS-07-2014-0039
  • 2. Mica Grujicic, Jennifer S. Snipes, S. Ramaswami, Polyurea/Fused-silica interfacial decohesion induced by impinging tensile stress-waves, AIMS Materials Science, 2016, 3, 2, 486, 10.3934/matersci.2016.2.486
  • 3. N. Iqbal, M. Tripathi, S. Parthasarathy, D. Kumar, P. K. Roy, Polyurea coatings for enhanced blast-mitigation: a review, RSC Adv., 2016, 6, 111, 109706, 10.1039/C6RA23866A
  • 4. M Grujicic, JS Snipes, R Galgalikar, R Yavari, V Avuthu, S Ramaswami, Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231, 5, 443, 10.1177/1464420715600002
  • 5. Nilanjan Mitra, , Blast Mitigation Strategies in Marine Composite and Sandwich Structures, 2018, Chapter 6, 119, 10.1007/978-981-10-7170-6_6

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Mica Grujicic, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved