Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Magnéli oxides as promising n-type thermoelectrics

1 Functional Inorganic and Hybrid Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK;
2 Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany

Special Issues: Multifunctional Oxide Materials

The discovery of a large thermopower in cobalt oxides in 1997 lead to a surge of interest in oxides for thermoelectric application. Whereas conversion efficiencies of p-type oxides can compete with non-oxide materials, n-type oxides show significantly lower thermoelectric performances. In this context so-called Magnéli oxides have recently gained attention as promising n-type thermoelectrics. A combination of crystallographic shear and intrinsic disorder lead to relatively low thermal conductivities and metallic-like electrical conductivities in Magnéli oxides. Current peak-zT values of 0.3 around 1100 K for titanium and tungsten Magnéli oxides are encouraging for future research. Here, we put Magnéli oxides into context of n-type oxide thermoelectrics and give a perspective where future research can bring us.
  Figure/Table
  Supplementary
  Article Metrics

Citation: Gregor Kieslich, Wolfgang Tremel. Magnéli oxides as promising n-type thermoelectrics. AIMS Materials Science, 2014, 1(4): 184-190. doi: 10.3934/matersci.2014.4.184

References

  • 1. Gaultois MW, Sparks TD, Borg CKH, et al. (2013) Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem Mater 15: 2911-2920.
  • 2. He J, Liu Y, Funahashi R (2011) Oxide thermoelectrics: The challenges, progress, and outlook. J Mater Res 15: 1762-1772.
  • 3. Nag A, Shubha V (2014) Oxide Thermoelectric Materials: A Structure-Property Relationship. J Elec Mater 4: 962-977.
  • 4. Kieslich G, Birkel CS, Douglas JE, et al. (2013) SPS-assisted preparation of the Magnéli phase WO2.90 for thermoelectric applications. J Mater Chem A 42: 13050-13054.
  • 5. Veremchuk I, Antonyshyn I, Candolfi C, et al. (2013) Diffusion-Controlled Formation of Ti2O3 during Spark-Plasma Synthesis. Inorg Chem 52:4458-4463.    
  • 6. Biswas K, He J, Blum ID, et al. (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489: 414-418.    
  • 7. Mingo N, Hauser D, Kobayashi NP, et al. (2009) “Nanoparticle-in-Alloy” Approach to Efficient Thermoelectrics: Silicides in SiGe. Nano Lett 2: 711-715.
  • 8. Toberer ES, May AF, Snyder GJ (2010) Zintl Chemistry for Designing High Efficiency Thermoelectric Materials. Chem Mater 3: 624-634.
  • 9. Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 20: R12685.
  • 10. Heremans JP, Dresselhaus MS, Bell LE, et al. (2013) When thermoelectrics reached the nanoscale. Nat Nanotechnol 7: 471-473.
  • 11. Zebarjadi M, Esfarjani K, Shakouri A, et al. (2009) Effect of Nanoparticles on Electron and Thermoelectric Transport. J Elec Mater 7: 954-959.
  • 12. Zhao L, He J, Berardan D, et al. (2014) BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Env Sci 7: 2900-2924.    
  • 13. Bérardan D, Guilmeau E, Maignan A, et al. (2008) In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Comm 1-2: 97-101.
  • 14. Ohtaki M, Araki K, Yamamoto K (2009) High Thermoelectric Performance of Dually Doped ZnO Ceramics. J Elec Mater 7: 1234-1238.
  • 15. Andersson S, Collén B, Kuylenstierna U, et al. (1957) Phase Analysis Studies on the Titanium-Oxygen System. Acta Chem Scand 11: 1641-1652.    
  • 16. Gadó P, Magnéli A, Niklasson RJV, et al. (1965) Shear Structure of the Wolfram Oxide WO2.95. Acta Chem Scand 19: 1514-1515.    
  • 17. Bursill LA, Hyde BG (1971) Crystal structures in the {l32} CS family of higher titanium oxides TinO2n-1. Acta Cryst B 1: 210-215.
  • 18. Eyring LR, Tai LT (1973) The Structural Chemistry of Extended Defects. Annu Rev Phys Chem1: 189-206.
  • 19. Migas DB, Shaposhnikov VL, Borisenko VE (2010) Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 9: 93714.
  • 20. Booth J, Ekström T, Iguchi E, et al. (1982) Notes on phases occurring in the binary tungsten-oxygen system. J Solid State Chem 3: 293-307.
  • 21. Kelm K, Mader W (2006) The Symmetry of Ordered Cubic γ-Fe2O3 investigated by TEM. Z. Naturforsch B 61b: 665-671.
  • 22. Canadell E, Whangbo MH (1991) Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem Rev 5:965-1034.
  • 23. Bartholomew R, Frankl D (1969) Electrical Properties of Some Titanium Oxides. Phys Rev 3:828-833.
  • 24. Sahle W, Nygren M (1983) Electrical conductivity and high resolution electron microscopy studies of WO3-x crystals with 0 ≤ x ≤ 0.28. J Solid State Chem 2: 154-160.
  • 25. Kieslich G, Veremchuk I, Antonyshyn I, et al. (2013) Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Phys Chem Chem Phys 37: 15399-15403.
  • 26. Parreira NMG, Polcar T, Caalerio A (2007) Thermal stability of reactive sputtered tungsten oxide coatings. Surface and Coatings Technol 201: 7076-7082.    
  • 27. Harada S, Tanaka K, Inui H, (2010) Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèli phases. J Appl Phys 8: 83703-83709.
  • 28. Mikami M, Ozaki K, (2012) Thermoelectric properties of nitrogen-doped TiO2-x compounds. J Phys Conf Ser 379: 12006-12012.    
  • 29. Kieslich G, Burkhardt U, Birkel CS, et al. (2014) Enhanced thermoelectric properties of the n-type Magnéli phase WO2.90: Reduced thermal conductivity through microstructure engineering. J Mater Chem A 2: 13492-13497.
  • 30. Li J, Sui J, Pei Y, et al. (2012) A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energ Environ Sci 9: 8543-8547.
  • 31. Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46: 6131-6140.    
  • 32. Goodenough J (1970) Interpretation of MxV2O5-β and MxV2-yTyO5-β phases. J Solid State Comm3-4: 349-358.
  • 33. Gaultois MW, Sparks TD, Borg CKH, et al. (2013) Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem Mater 25: 2911-2920.    
  • 34. Hebert S, Maignan A (2010) Thermoelectric Oxides, In: Bruce DW, O'Hare Dermot, Walton RI, Functional Oxides, 1 Eds, West Sussex, John Wiley & Sons, 203-255.
  • 35. Backhaus-Ricoult M, Rustad JR, Vargheese D, et al. (2012) Levers for Thermoelectric Properties in Titania-Based Ceramics. J Elec Mater 6: 1636-1647.
  • 36. Chaikin P, Beni G (1976) Thermopower in the correlated hopping regime. Phys Rev B 2:647-651.
  • 37. Liu C, Miao L, Zhou J, et al. (2013) Chemical Tuning of TiO2 Nanoparticles and Sintered Compacts for Enhanced Thermoelectric Properties. J Phys Chem C 22: 11487-11497.
  • 38. Fuda K, Shoji T, Kikuchi S, et al. (2013) Fabrication of Titanium Oxide-Based Composites by Reactive SPS Sintering and Their Thermoelectric Properties. J Elec Mater 7: 2209-2213
  • 39. Wang N, Chen H, He H, et al. (2013) Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci Reports 3: 3449-3453.
  • 40. Portehault D, Maneeratana V, Candolfi C, et al. (2011) Facile General Route toward Tunable Magnéli Nanostrcutures and Their Use As Thermoelectric Metal Oxide/Carbon Nanocomposites. ACS Nano 5: 9052-9061.    

 

This article has been cited by

  • 1. Gregor Kieslich, Giacomo Cerretti, Igor Veremchuk, Raphaël P. Hermann, Martin Panthöfer, Juri Grin, Wolfgang Tremel, A chemists view: Metal oxides with adaptive structures for thermoelectric applications, physica status solidi (a), 2016, n/a, 10.1002/pssa.201532702
  • 2. Yanfang Liu, Sining Yun, Xiao Zhou, Yuzhi Hou, Taihong Zhang, Jing Li, Anders Hagfeldt, Intrinsic Origin of Superior Catalytic Properties of Tungsten-based Catalysts in Dye-sensitized Solar Cells, Electrochimica Acta, 2017, 10.1016/j.electacta.2017.04.176
  • 3. Felix Kaiser, Paul Simon, Ulrich Burkhardt, Bernd Kieback, Yuri Grin, Igor Veremchuk, Spark Plasma Sintering of Tungsten Oxides WOx (2.50 ≤ x ≤ 3): Phase Analysis and Thermoelectric Properties, Crystals, 2017, 7, 9, 271, 10.3390/cryst7090271
  • 4. Yumei Ren, Qun Xu, Xiaoli Zheng, Yongzhu Fu, Zhuan Wang, Hailong Chen, Yuxiang Weng, Yunchun Zhou, Building of Peculiar Heterostructure of Ag/Two-dimensional Fullerene Shell-WO 3-x for Enhanced Photoelectrochemical Performance, Applied Catalysis B: Environmental, 2018, 10.1016/j.apcatb.2018.03.040
  • 5. Davide Beretta, Neophytos Neophytou, James M. Hodges, Mercouri G. Kanatzidis, Dario Narducci, Marisol Martin- Gonzalez, Matt Beekman, Benjamin Balke, Giacomo Cerretti, Wolfgang Tremel, Alexandra Zevalkink, Anna I. Hofmann, Christian Müller, Bernhard Dörling, Mariano Campoy-Quiles, Mario Caironi, Thermoelectrics: From history, a window to the future, Materials Science and Engineering: R: Reports, 2018, 10.1016/j.mser.2018.09.001
  • 6. Qing-Yuan Liu, Zi-Yi Liu, Xue-Bo Zhou, Zhi-Guo Liu, Ming-Xue Huo, Xian-Jie Wang, Yu Sui, Large Size Single Crystal Growth of Ti4O7 by the Floating-Zone Method, Crystal Growth & Design, 2019, 10.1021/acs.cgd.8b01318
  • 7. Yun-Jae Lee, Taehun Lee, Aloysius Soon, Phase Stability Diagrams of Group 6 Magnéli Oxides and Their Implications for Photon-Assisted Applications, Chemistry of Materials, 2019, 10.1021/acs.chemmater.9b01430

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Gregor Kieslich, Wolfgang Tremel, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved