Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Multi-Scale Computation-Based Design of Nano-Segregated Polyurea for Maximum Shockwave-Mitigation Performance

Department of Mechanical Engineering, Clemson University, Clemson SC 29634, USA

Special Issues: Materials by Design

A multi-length-scale computational analysis is used to carry out the design of polyurea for maximum shockwave-mitigation performance. The computational analysis involves a combined all-atom/coarse-grained molecular-level investigation of shockwave-propagation within polyurea and a finite-element analysis of direct quantification of the shockwave-mitigation capacity of this material as a function of its chemistry (or, more specifically, of its soft-segment molecular weight). The results obtained suggest that the approach employed can correctly identify the optimal chemistry of polyurea and, thus, be of great benefit in the efforts to develop new highly-efficient blastwave-protective materials, in a cost-effective manner.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Polyurea; Materials by design; Shockwave mitigation

Citation: Mica Grujicic, S. Ramaswami, J. S. Snipes, R. Yavari. Multi-Scale Computation-Based Design of Nano-Segregated Polyurea for Maximum Shockwave-Mitigation Performance. AIMS Materials Science, 2014, 1(1): 15-27. doi: 10.3934/matersci.2014.1.15

References

  • 1. Castagna AM, Pangon A, Choi T, et al. (2012) The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas. Macromol 45:8438-8444.    
  • 2. Grujicic M, Yavari R, Snipes JS, et al. (2013) Discrete Element Modeling and Analysis of Structural Collapse/Survivability of a Building Subjected to Improvised Explosive Device (IED) Attack. Adv Mater Sci Appl 2: 9-24.
  • 3. Grujicic M, Pandurangan B, He T, et al. (2010) Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition. Mater Sci Eng A, 527: 7741-7751.    
  • 4. Grujicic M, Arakere A, Pandurangan B, et al. (2012) Computational Investigation of Shock-Mitigation Efficacy of Polyurea when used in a Combat Helmet: A Core Sample Analysis. Multidisc Model Mater Struc 8: 297-331.    
  • 5. Grujicic M, Snipes JS, Ramaswami S, et al. Meso-Scale Computational Investigation of Shock-Wave Attenuation by Trailing Release-Wave in Different Grades of Polyurea. J Mater Eng Perform, in press. DOI: 10.1007/s11665-013-0760-3
  • 6. Settles G., Pennsylvania State University, work in progress, 2013.
  • 7. Grujicic M, Yavari R, Snipes JS, et al. (2012) Molecular-Level Computational Investigation of Shock-Wave Mitigation Capability of Polyurea. J Mater Sci 47: 8197-8215.    
  • 8. Grujicic M, Snipes JS, Ramaswami S, et al. (2013) Coarse-Grained Molecular-Level Analysis of Polyurea Properties and Shock-Mitigation Potential. J Mater Eng Perform 22: 1964-1981.    
  • 9. Sun H, Ren P, Fried JR (1998) The Compass Force-field: Parameterization and Validation for Phosphazenes. Comput Theor Polym Sci 8: 229-246.    
  • 10. Grujicic M, Bell WC, Pandurangan B, et al. (2010) Blast-wave Impact-Mitigation Capability of Polyurea When Used as Helmet Suspension Pad Material. Mater Des 31: 4050-4065.    
  • 11. Grujicic A, LaBerge M, Grujicic M, et al. (2012) Potential Improvements in Shock-Mitigation Efficacy of A Polyurea-Augmented Advanced Combat Helmet: A Computational Investigation. J Mater Eng Perform 21: 1562-1579.    
  • 12. Grujicic M, Olson GB, Owen WS (1985) Mobility of the β1-γ1' Martensitic Interface in Cu-Al-Ni. I. Experimental Measurements. Metall Trans 16A: 1723-1734.
  • 13. Grujicic M, Bell WC, Pandurangan B, et al. (2012) Inclusion of Material Nonlinearity and Inelasticity into a Continuum-Level Material Model for Soda-lime Glass. J Mater Des 35:144-155.    
  • 14. Grujicic M, Snipes JS, Ramaswami S, et al. (2013) Molecular- and Domain-Level Microstructure Dependent Material Model for Nano-Segregated Polyurea. Multidisc Model Mater Struc 9: 548-578.    
  • 15. Grujicic M, He T, Pandurangan B, et al. (2011) Development and Parameterization of a Time-Invariant (Equilibrium) Material Model for Segmented Elastomeric Polyureas. J Mater: Des Appl 225: 182-194.
  • 16. Grujicic M, d'Entremont BP, Pandurangan B, et al. (2012) A Study of the Blast-induced Brain White-Matter Damage and the Associated Diffuse Axonal Injury. Multidisc Model Mater Struc 8: 213-245.    
  • 17. Grujicic M, d'Entremont BP, Pandurangan B, et al. (2012) Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance. J Mater Eng Perform 21:2024-2037.    
  • 18. Grujicic M, Pandurangan B (2012) Meso-Scale Analysis of Segmental Dynamics in Micro-phase Segregated Polyurea. J Mater Sci 47: 3876-3889.    

 

This article has been cited by

  • 1. Mica Grujicic, Jennifer Snipes, S. Ramaswami, A computational analysis of the utility of chemical reactions within protective structures in mitigating shockwave-impact effects, Multidiscipline Modeling in Materials and Structures, 2016, 12, 3, 438, 10.1108/MMMS-04-2015-0019
  • 2. M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, R.S. Barsoum, All-atom molecular-level computational analyses of polyurea/fused-silica interfacial decohesion caused by impinging tensile stress-waves, International Journal of Structural Integrity, 2014, 5, 4, 339, 10.1108/IJSI-01-2014-0001
  • 3. M. Grujicic, R. Galgalikar, J. S. Snipes, S. Ramaswami, Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects, Journal of Materials Engineering and Performance, 2016, 25, 1, 199, 10.1007/s11665-015-1850-1
  • 4. James Runt, Autchara Pangon, Alicia Castagna, Yong He, Mica Grujicic, , Elastomeric Polymers with High Rate Sensitivity, 2015, 5, 10.1016/B978-0-323-35400-4.00002-7
  • 5. , , Elastomeric Polymers with High Rate Sensitivity, 2015, 187, 10.1016/B978-0-323-35400-4.00005-2
  • 6. Mica Grujicic, R. Yavari, J. S. Snipes, S. Ramaswami, T. Jiao, R. J. Clifton, Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates, Journal of Materials Engineering and Performance, 2015, 24, 2, 778, 10.1007/s11665-014-1316-x
  • 7. Mica Grujicic, Jennifer S. Snipes, S. Ramaswami, Polyurea/Fused-silica interfacial decohesion induced by impinging tensile stress-waves, AIMS Materials Science, 2016, 3, 2, 486, 10.3934/matersci.2016.2.486
  • 8. Mica Grujicic, S. Ramaswami, Jennifer Snipes, Nacre-like ceramic/polymer laminated composite for use in body-armor applications, AIMS Materials Science, 2016, 3, 1, 83, 10.3934/matersci.2016.1.83
  • 9. M. Grujicic, S. Ramaswami, J. S. Snipes, R. Yavari, P. Dudt, Experimental and computational investigations of the potential improvement in helmet blast-protection through the use of a polyurea-based external coating, Multidiscipline Modeling in Materials and Structures, 2016, 12, 1, 33, 10.1108/MMMS-02-2015-0009
  • 10. Mica Grujicic, Jennifer Snipes, S. Ramaswami, Meso-scale computational investigation of polyurea microstructure and its role in shockwave attenuation/dispersion, AIMS Materials Science, 2015, 2, 3, 163, 10.3934/matersci.2015.3.163
  • 11. M Grujicic, S Ramaswami, JS Snipes, P Dudt, Potential improvement in helmet blast-protection via the use of a polyurea external coating: Combined experimental/computational analyses, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 146442071664447, 10.1177/1464420716644472

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Mica Grujicic, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved