Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Characterization of Chiral Carbonaceous Nanotubes Prepared from Four Coiled Tubular 4,4-biphenylene-silica Nanoribbons

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

Four dipeptides derived from phenylalanine were synthesized, which can self-assemble into twisted nanoribbon in deionized water. The handedness of the organic self-assemblies was controlled by the chirality of the phenylalanine at the terminals. Coiled 4,4'-biphenylene bridged polybissilsesquioxane tubular nanoribbons were prepared using the organic self-assemblies as the templates. The circular dichroism spectra indicated that the biphenylene rings preferred to twist in one-handedness within the walls of the samples. After carbonization and removal of silica, single-handed coiled carbonaceous tubular nanoribbons were obtained. The Raman spectra indicated that the carbon was amorphous. The diffuse reflectance circular dichroism spectra indicated the tubular carbonaceous nanoribbons exhibited optical activity.
  Article Metrics


1. Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D, (2005) Angew. Chem. Int. Ed. 44: 7053-7059.    

2. Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D, (2013) . JAm. Chem. Soc 35: 1524-1530.

3. Motojima S, Hoshiya S, Hishikawa Y, (2003) Carbon 41: 2658-2660.

4. Qin Y, Zhang Z, Cui Z, (2003) Carbon 41: 3072-3074.

5. Qin Y, Zhang Z, Cui Z, (2004) Carbon 42: 1917-1922.

6. Qin Y, Yu L, Wang Y, Li G, Cui Z, (2006) Solid State Commun. 138: 5-8.

7. Chen X, Yang S, Motojima S, Ichihara M, Mater. Lett. 2005, 59, 854-858.

8. Akazaki K, Toshimitsu F, Ozawa H, Fujigaya T, Nakashima N, (2012) J. Am. Chem. Soc. 134:12700-12707.    

9. Ozawa H, Fujigaya T, Niidome Y, Hotta N, Fujiki M, Nakashima N, (2011) J. Am. Chem. Soc.133: 2651-2657.

10. Liu G, Yasumitsu T, Zhao L, Peng X, Wang F, Bauri A K, Aonuma S, Kimura T, Komatsu N,(2012) Org. Biomol. Chem. 10: 5830-5836.

11. Liu S, Duan Y, Feng X, Yang J, Che S, (2013) Angew. Chem. Int. Ed. 52: 6858-6862.    

12. Zhang C, Li Y, Li B, Yang Y, (2013) Chem. Asian J .DOI: 10.1002/asia.201300798.

13. Moreau J J E, Vellutini L, Wong Chi Man M, Bied C, (2001) J. Am. Chem. Soc. 123:1509-1510.    

14. Wu X, Ji S, Li Y, Li B, Zhu X, Hanabusa K, Yang Y, (2009) J. Am. Chem. Soc. 131:5986-5993.    

15. Chen Y, Li Y, Chen Y, Liu X, Zhang M, Li B, Yang Y, (2009) Chem. Commun. 34:5177-5179.

16. Li H, Li B, Chen Y, Zhang M, Wang S, Li Y, Yang Y, (2009) Chin. J. Chem. 27: 1860-1862.

17. Li B, Xu Z, Zhuang W, Chen Y, Wang S, Li Y, Wang M, Yang Y, (2011) Chem. Commun. 47:11495-11497.

18. Fu Y, Li B, Huang Z, Li Y, Yang Y, (2013) Langmuir 29: 6013-6017.

19. Li Y, Li B, Fu Y, Lin S, Yang Y, (2013) Langmuir 29: 9721-9726.

20. Ferrari A C, Robertson J, (2000) Phys. Rev. 61: 14095-14107.    

Copyright Info: © 2014, Yonggang Yang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved