AIMS Geosciences, 2017, 3(2): 163-186. doi: 10.3934/geosci.2017.2.163.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

1 Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
2 NASA Goddard Space Flight Center Code 619, 8800 Greenbelt Road, Greenbelt, MD 20771, USA

Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Landsat-8; Sentinel-2; yield; area; mapping; wheat; MODIS; agriculture; Ukraine

Citation: Sergii Skakun, Eric Vermote, Jean-Claude Roger, Belen Franch. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale. AIMS Geosciences, 2017, 3(2): 163-186. doi: 10.3934/geosci.2017.2.163

References

  • 1. Becker-Reshef I, Justice C, Sullivan M, et al. (2010) Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote Sens 2: 1589-1609.    
  • 2. Lobell DB (2013) The use of satellite data for crop yield gap analysis. Field Crops Res 143: 56-64.    
  • 3. Bokusheva R, Kogan F, Vitkovskaya I, et al. (2016) Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agric Meteorol 220: 200-206.    
  • 4. Skakun S, Kussul N, Shelestov A, et al. (2016) The use of satellite data for agriculture drought risk quantification in Ukraine. Geomat, Nat Hazards Risk 7: 901-917.    
  • 5. Johnson DM (2016) A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products. Intern J Appl Earth Obs Geoinform 52: 65-81.    
  • 6. López-Lozano R, Duveiller G, Seguini L, et al. (2015) Towards regional grain yield forecasting with 1 km-resolution EO biophysical products: strengths and limitations at pan-European level. Agric For Meteorol 206: 12-32.    
  • 7. Franch B, Vermote EF, Becker-Reshef I, et al. (2015) Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sens Environ 161: 131-148.    
  • 8. Kogan F, Kussul N, Adamenko T, et al. (2013) Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. Intern J Appl Earth Obs Geoinform 23: 192-203.    
  • 9. Mkhabela MS, Bullock P, Raj S, et al. (2011) Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric For Meteorol 151: 385-393.
  • 10. Becker-Reshef I, Vermote E, Lindeman M, et al. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens Environ 114: 1312-1323.    
  • 11. Salazar L, Kogan F, Roytman L (2007) Use of remote sensing data for estimation of winter wheat yield in the United States. Intern J Remote Sens 28: 3795-3811.    
  • 12. Huang J, Sedano F, Huang Y, et al. (2016) Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric For Meteorol 216: 188-202.
  • 13. Huang J, Tian L, Liang S, et al. (2015) Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric For Meteorol 204: 106-121.
  • 14. de Wit A, Duveiller G, Defourny P (2012) Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations. Agric For Meteorol 164: 39-52.    
  • 15. Kolotii A, Kussul N, Shelestov A, et al. (2015) Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sens Spat Inf Sci 40: 39-44.
  • 16. Kowalik W, Dabrowska-Zielinska K, Meroni M, et al. (2014) Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries. Intern J Appl Earth Obs Geoinform 32: 228-239.
  • 17. Morell FJ, Yang HS, Cassman KG, et al. (2016) Can crop simulation models be used to predict local to regional maize yields and total production in the US Corn Belt? Field Crops Res 192: 1-12.    
  • 18. Gao F, Anderson MC, Zhang X, et al. (2017) Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens Environ 188: 9-25.    
  • 19. Doraiswamy PC, Hatfield JL, Jackson TJ, et al. (2004) Crop condition and yield simulations using Landsat and MODIS. Remote Sens Environ 92: 548-559.    
  • 20. Baez-Gonzalez AD, Chen PY, Tiscareno-Lopez M, et al. (2002) Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico. Crop Sci 42: 1943-1949.    
  • 21. Lobell DB, Thau D, Seifert C, et al. (2015) A scalable satellite-based crop yield mapper. Remote Sens Environ 164: 324-333.    
  • 22. Gallego FJ, Kussul N, Skakun S, et al. (2014) Efficiency assessment of using satellite data for crop area estimation in Ukraine. Intern J Appl Earth Obs Geoinform 29: 22-30.    
  • 23. State Statistics Service of Ukraine. Quality reports. Standard report on quality of the state statistical observation over areas, gross harvests and yields of agricultural crops, fruit, berries and grapes. Available from: http://ukrstat.gov.ua/suya/st_zvit/st_zvit_e/st_zvit_e.htm.
  • 24. Roy DP, Wulder MA, Loveland TR, et al. (2014) Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ 145: 154-172.
  • 25. Drusch M, Del Bello U, Carlier S, et al. (2012) Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens Environ 120: 25-36.
  • 26. Vermote E, Justice C, Claverie M, et al. (2016) Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185: 46-56.
  • 27. Zhu Z, Wang S, Woodcock CE (2015) Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens Environ 159: 269-277.
  • 28. Vermote EF and Kotchenova S (2008). Atmospheric correction for the monitoring of land surfaces. J Geophys Res: Atmos 113: D23.
  • 29. Storey J, Roy DP, Masek J, et al. (2016) A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sensi Environ 186: 121-122.
  • 30. Skakun S, Roger JC, Vermote E, et al. (2017) Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. Int J Digit Earth.
  • 31. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8: 127-150.    
  • 32. Molod A, Takacs L, Suarez M, et al. (2015) Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci Model Dev 8: 1339-1356.
  • 33. Skakun S, Franch B, Vermote E, et al. (2017) Early season large-area winter crop mapping using MODIS NDVI data and growing degree days information. Remote Sens Environ 195: 244-258.    
  • 34. Bishop CM (2006) Pattern Recognition and Machine Learning. New York: Springer.
  • 35. Lavreniuk M, Kussul N, Skakun S, et al. (2015) Regional retrospective high resolution land cover for Ukraine: Methodology and results. In: 2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS2015, New York: IEEE, 3965-3968.

 

This article has been cited by

  • 1. Valerie J. Pasquarella, Christopher E. Holden, Curtis E. Woodcock, Improved mapping of forest type using spectral-temporal Landsat features, Remote Sensing of Environment, 2018, 210, 193, 10.1016/j.rse.2018.02.064
  • 2. Divyesh Varade, Anudeep Sure, Onkar Dikshit, Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis, Geocarto International, 2018, 1, 10.1080/10106049.2018.1497096
  • 3. Feng Gao, Martha Anderson, Craig Daughtry, David Johnson, Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery, Remote Sensing, 2018, 10, 9, 1489, 10.3390/rs10091489
  • 4. Martin Claverie, Junchang Ju, Jeffrey G. Masek, Jennifer L. Dungan, Eric F. Vermote, Jean-Claude Roger, Sergii V. Skakun, Christopher Justice, The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sensing of Environment, 2018, 219, 145, 10.1016/j.rse.2018.09.002
  • 5. Lilian Niacsu, Lucian Sfica, Adrian Ursu, Pavel Ichim, Diana Elena Bobric, Iuliana Gabriela Breaban, Wind erosion on arable lands, associated with extreme blizzard conditions within the hilly area of Eastern Romania, Environmental Research, 2018, 10.1016/j.envres.2018.11.008
  • 6. B. Franch, E.F. Vermote, S. Skakun, J.C. Roger, I. Becker-Reshef, E. Murphy, C. Justice, Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine, International Journal of Applied Earth Observation and Geoinformation, 2019, 76, 112, 10.1016/j.jag.2018.11.012
  • 7. Md. Rahman, Liping Di, Eugene Yu, Chen Zhang, Hossain Mohiuddin, In-Season Major Crop-Type Identification for US Cropland from Landsat Images Using Crop-Rotation Pattern and Progressive Data Classification, Agriculture, 2019, 9, 1, 17, 10.3390/agriculture9010017
  • 8. Yuval Sadeh, Xuan Zhu, Karine Chenu, David Dunkerley, Sowing date detection at the field scale using CubeSats remote sensing, Computers and Electronics in Agriculture, 2019, 157, 568, 10.1016/j.compag.2019.01.042
  • 9. Laura Piedelobo, David Hernández-López, Rocío Ballesteros, Amal Chakhar, Susana Del Pozo, Diego González-Aguilera, Miguel A. Moreno, Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin, Agricultural Systems, 2019, 171, 36, 10.1016/j.agsy.2019.01.005
  • 10. Luka Rumora, Mario Miler, Damir Medak, Contemporary comparative assessment of atmospheric correction influence on radiometric indices between Sentinel-2A and Landsat 8 imagery, Geocarto International, 2019, 1, 10.1080/10106049.2019.1590465
  • 11. Yuanhuizi He, Changlin Wang, Fang Chen, Huicong Jia, Dong Liang, Aqiang Yang, Feature Comparison and Optimization for 30-M Winter Wheat Mapping Based on Landsat-8 and Sentinel-2 Data Using Random Forest Algorithm, Remote Sensing, 2019, 11, 5, 535, 10.3390/rs11050535
  • 12. Nataliia Kussul, Mykola Lavreniuk, Andrii Kolotii, Sergii Skakun, Olena Rakoid, Leonid Shumilo, A workflow for Sustainable Development Goals indicators assessment based on high-resolution satellite data, International Journal of Digital Earth, 2019, 1, 10.1080/17538947.2019.1610807
  • 13. Jianxi Huang, Jose L. Gómez-Dans, Hai Huang, Hongyuan Ma, Qingling Wu, Philip E. Lewis, Shunlin Liang, Zhongxin Chen, Jing-Hao Xue, Yantong Wu, Feng Zhao, Jing Wang, Xianhong Xie, Assimilation of remote sensing into crop growth models: Current status and perspectives, Agricultural and Forest Meteorology, 2019, 276-277, 107609, 10.1016/j.agrformet.2019.06.008
  • 14. Hafez Fathipoor, Hossein Arefi, Reza Shah-Hosseini, Hossein Moghadam, Corn forage yield prediction using unmanned aerial vehicle images at mid-season growth stage, Journal of Applied Remote Sensing, 2019, 13, 03, 1, 10.1117/1.JRS.13.034503
  • 15. V.S. Manivasagam, Gregoriy Kaplan, Offer Rozenstein, Developing Transformation Functions for VENμS and Sentinel-2 Surface Reflectance over Israel, Remote Sensing, 2019, 11, 14, 1710, 10.3390/rs11141710
  • 16. Sergii Skakun, Eric Vermote, Belen Franch, Jean-Claude Roger, Nataliia Kussul, Junchang Ju, Jeffrey Masek, Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models, Remote Sensing, 2019, 11, 15, 1768, 10.3390/rs11151768
  • 17. Piero Toscano, Annamaria Castrignanò, Salvatore Filippo Di Gennaro, Alessandro Vittorio Vonella, Domenico Ventrella, Alessandro Matese, A Precision Agriculture Approach for Durum Wheat Yield Assessment Using Remote Sensing Data and Yield Mapping, Agronomy, 2019, 9, 8, 437, 10.3390/agronomy9080437
  • 18. Merryn L. Hunt, George Alan Blackburn, Luis Carrasco, John W. Redhead, Clare S. Rowland, High resolution wheat yield mapping using Sentinel-2, Remote Sensing of Environment, 2019, 233, 111410, 10.1016/j.rse.2019.111410
  • 19. Ali Nasrallah, Nicolas Baghdadi, Mohammad El Hajj, Talal Darwish, Hatem Belhouchette, Ghaleb Faour, Salem Darwich, Mario Mhawej, Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping, Remote Sensing, 2019, 11, 19, 2228, 10.3390/rs11192228
  • 20. Jie Sun, Liping Di, Ziheng Sun, Yonglin Shen, Zulong Lai, County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model, Sensors, 2019, 19, 20, 4363, 10.3390/s19204363
  • 21. Marco A. Zanella, Daniel M. de Queiroz, Domingos S. M. Valente, Francisco de A. de C. Pinto, Nerilson T. Santos, MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES, Engenharia Agrícola, 2019, 39, 5, 676, 10.1590/1809-4430-eng.agric.v39n5p676-683/2019
  • 22. Zhen Nie, Karen Kie Yan Chan, Bing Xu, Preliminary Evaluation of the Consistency of Landsat 8 and Sentinel-2 Time Series Products in An Urban Area—An Example in Beijing, China, Remote Sensing, 2019, 11, 24, 2957, 10.3390/rs11242957
  • 23. Minh D. Nguyen, Oscar M. Baez-Villanueva, Duong D. Bui, Phong T. Nguyen, Lars Ribbe, Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon), Remote Sensing, 2020, 12, 2, 281, 10.3390/rs12020281

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Sergii Skakun, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved