Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Inversion of Gravity Anomalies Using Primal-Dual Interior Point Methods

1 Cyber-ShARE Center of Excellence, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
2 Department of Geological Sciences, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA

Special Issues: Special Issue on Satellite Remote Sensing

Structural inversion of gravity datasets based on the use of density anomalies to derive robust images of the subsurface (delineating lithologies and their boundaries) constitutes a fundamental non-invasive tool for geological exploration. The use of experimental techniques in geophysics to estimate and interpret di erences in the substructure based on its density properties have proven e cient; however, the inherent non-uniqueness associated with most geophysical datasets make this the ideal scenario for the use of recently developed robust constrained optimization techniques. We present a constrained optimization approach for a least squares inversion problem aimed to characterize 2-Dimensional Earth density structure models based on Bouguer gravity anomalies. The proposed formulation is solved with a Primal-Dual Interior-Point method including equality and inequality physical and structural constraints. We validate our results using synthetic density crustal structure models with varying complexity and illustrate the behavior of the algorithm using di erent initial density structure models and increasing noise levels in the observations. Based on these implementations, we conclude that the algorithm using Primal-Dual Interior-Point methods is robust, and its results always honor the geophysical constraints. Some of the advantages of using this approach for structural inversion of gravity data are the incorporation of a priori information related to the model parameters (coming from actual physical properties of the subsurface) and the reduction of the solution space contingent on these boundary conditions.
  Article Metrics

Keywords inverse theory; computational geophysics; gravity anomalies; 2-D Earth imaging; computational science; optimization.

Citation: Azucena Zamora, Aaron A. Velasco. Inversion of Gravity Anomalies Using Primal-Dual Interior Point Methods. AIMS Geosciences, 2016, 2(2): 116-151. doi: 10.3934/geosci.2016.2.116


  • 1 Chang S., Baag C., and Langston C. (2004) Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm. Bull. Seism. Soc. Am., 94: 691–704.    
  • 2 Moorkamp M., Jones A.G., and Fishwick S. (2010) Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J Geophys Res, 115: 1–23.
  • 3 Sambridge M. and Drijkoningen G.G. (1992) Genetic algorithms in seismic waveform inversion. Geophys J Int, 109: 323–342.    
  • 4 Shibutani T., Sambridge M., and Kennett, B. (1996) Genetic algorithm inversion for receiver functions with application to the crust and uppermost mantle structure beneath eastern Australia. Geophys. Res. Lett., 23: 1829–1832.    
  • 5 Vinnik L., Reigber C., Aleshin I., Kosarev G., Kaban M., Oreshin S., and Roecker S. (2004) Receiver function tomography of the central Tien Shan. Earth planet. Sci. Lett., 225: 131–146.    
  • 6 Vinnik L., Aleshin I., Kaban M., Kiselev S., Kosarev G., Oreshin S., and Reigber C. (2006) Crust and mantle of the Tien Shan from data of the receiver function tomography. Izvest Phys. Solid Earth, 42: 639–651.    
  • 7 Sambridge M. (1999) Geophysical inversion with a neighbourhood algorithm I: Searching a parameter space. Geophys J Int, 138: 479–494.    
  • 8 Sambridge M. (1999) Geophysical inversion with a neighbourhood algorithm II: Appraising the ensemble. Geophys J Int , 138: 727-746.    
  • 9 Sambridge M. and Mosegaard K. (2002) Monte Carlo methods in geophysical inverse problems. Rev. Geophys., 40: 3.1–3.29.
  • 10 Lines L.R., Schultz A.K., and Treitel S. (1988) Cooperative inversion of geophysical data. Geophys, 53: 8–20    
  • 11 Sosa A., Velasco A.A., Velazquez L., Argaez M., and Romero R. (2013) Constrained optimization framework for joint inversion of geophysical data sets. Geophys J Int, 195: 1745–1762.
  • 12 Musil M., Maurer H.R., and Green A.G. (2003) Discrete tomography and joint inversion for loosely connected or unconnected physical properties: application to crosshole seismic and georadar data set. Geophys J Int, 153: 389–402.    
  • 13 Burstedde C. and Ghattas O. (2009) Algorithmic strategies for full waveform inversion: 1D experiments. Geophys, 74: WCC37–WCC46.    
  • 14 Li Y. and Oldenburg D.W. (1998) 3-D inversion of gravity data. Geophys, 63: 109–119.    
  • 15 USGS.(1997) Introduction to potential fields: Gravity.
  • 16 Abdelrahman E.M., Abo-Ezz E.R., Essa K.S., El-Araby T.M. and Soliman K.S. (2006) A leastsquares vaiance analysis method for shape and depth estimation from gravity data. J Geophys Engin, 3: 143–153.
  • 17 Essa K.S. (2007) A simple formula for shape and depth determination from residual gravity anomalies. Acta Geophys, 55: 182–190.
  • 18 Essa K.S. (2011) A new algorithm for gravity or self-potential data interpretation. J Geophys Engin, 8: 434–446.
  • 19 Mehanee S. (2014) Accurate and e cient regularized inversion approach for the interpretation of isolated gravity anomalies. Pure App Geophys, 171: 1897–1937.    
  • 20 Cady J.W. (1980) Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms. Geophys, 45: 1507–1512.    
  • 21 Levine S. (1941) The calculation of gravity anomalies due to bodies of finite extent. Geophys, 6: 180–196.    
  • 22 Siegert A.J.F. (1942) A mechanical integrator for the computation of gravity anomalies. Geophys, 7: 354–366.    
  • 23 Talwani M., Worzel J.L., and Landisman M. (1959) Rapid gravity computations of twodimensional bodies with the application to the Mendocino submarine fracture zone. J Geophys Res, 64: 49–59.    
  • 24 Talwani M. and Ewing M. (1960) Rapid computation of gravitational attraction of threedimensional bodies of arbitrary shape. Geophys, 35: 203–225.
  • 25 Nagy D. (1966) The gravitational attraction of a right rectangular prism. Geophys, 31: 2362– 2371.
  • 26 Plou D. (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophys, 41: 727–741.    
  • 27 Aster R., Borchers B., and Thurber C. (2005) Parameter estimation and inverse problems. 1 Ed., Elsevier Academic Press.
  • 28 Snieder R. and Trampert J. (1999) Inverse problems in geophysics. Wavefield inversion, edited by A. Wirgin. Springer Verlag. 119–190.
  • 29 Guillen A., Calcagno P., Courrioux G., Joly A., and Ledru P. (2008) Geological modeling from field data and geological knowledge: Part II. Modeling validation using gravity and magnetic data inversion. Phys Earth Planet Interi, 171: 158–169.
  • 30 Wang G., Garcia D., Liu Y., de Jeu R., and Johannes D.A. (2012) A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environ Model Software, 30: 139–142.    
  • 31 Barbosa V.C.F., Silva J.B.C., and Medeiros W.E. (2002) Practical applications of uniqueness theorems in gravimetry. Part II – pragmatic incorporation of concrete geological information. Geophys, 67: 795–800.
  • 32 Bott M.H.P. (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J Royal Astron Soci, 3: 63–67.    
  • 33 Pedersen L.B. (1979) Constrained inversion of potential field data. Geophys Prosp, 27: 726– 748.    
  • 34 Pilkington M. (2009) 3-D magnetic data-space inversion with sparseness constraints. Geophys, 74: L7–L15.    
  • 35 Safon C., Vasseur G., and Cuer M. (1977) Some applications of linear programming to the inverse gravity problem. Geophys, 42: 1215–1229.    
  • 36 Zhdanov M.S. (1988) Integral Transforms in Geophysics. Springer.
  • 37 Lowrie W. (2007) Fundamentals of Geophysics. 2 Eds., Cambridge University Press.
  • 38 Won I.J. and Bevis M. (1987) Computing the gravitational and magnetic anomalies due to a polygon: algorithms and Fortran subroutines. Geophys, 52: 232–238.    
  • 39 Nettleton L.L. (1971) Elementary gravity and magnetics for geologists and seismologists. Society of Exploration Geophysicists Geophysical Monograph Series Volume 1. 1 Ed., Society of Exploration Geophysicists.
  • 40 Telford W.S., Geldart L.P., and Sheri R.E. (1990) Applied Geophysics. 2 Eds., Cambridge University Press.
  • 41 Roy L., Sen M., McIntosh K., Sto a P., and Nakamura Y. (2005) Joint inversion of first arrival seismic travel-time and gravity data. J Geophys Engin, 2: 277–289.
  • 42 Skeels D.C. (1947) Ambiguity in gravity interpretation. Geophys, 12: 43–56.    
  • 43 Argaez M. and Tapia R. (2002) The global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for nonlinear programming. J Optim Theory App, 114: 255–272.    
  • 44 Nocedal J. and Wright S.J. (2006) Numerical Optimization. 2 Eds., Springer Verlag.
  • 45 Wright S.J. (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics.
  • 46 Al-Chalabi M. (1972) Interpretation of gravity anomalies by non-linear optimization. Geophys Prosp, 20: 1–16.    
  • 47 Musil M., Maurer H.R., Green A.G., Horstmeyer H., Nitsche F.O., Vonder Muhll D., and Springman S. (2002) Shallow seismic surveying of an alpine rock glacier. Geophy, 67: 1701–1710.    
  • 48 Gallardo L.A. and Meju M.A. (2004) Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J Geophys Re, 109: 1–11.
  • 49 Maceira M. and Ammon C.J. (2009) Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure. J Geophys Resh, 114: 1–18.
  • 50 Maceira M., Zhang H., Modrak R.T., Rowe C.A., and Begnaud M.L. (2010) Advanced multivariate inversion techniques for high resolution 3-D geophysical modeling. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, 97–107.
  • 51 Moorkamp M., Heincke B., Jegen M., Roberts A.W., and Hobbs R.W. (2011) A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys J Int, 184: 477–493.    
  • 52 Haber E. and Oldenburg D. (1997) Joint inversion: a structural approach. Inverse Prob, 13: 63–77.
  • 53 Sosa A., Thompson L., Velasco A.A., Romero R., and Hermann R. (2014) 3-D Structure of the southern Rio Grande Rift from 1-D constrained joint inversion of receiver functions and surface wave dispersion. Earth Planet Sci Lett, 402: 127–137.    


Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Azucena Zamora, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved