Research article Special Issues

Preferable location of chromosomes 1, 29, and X in bovine spermatozoa

  • Received: 30 November 2017 Accepted: 07 March 2018 Published: 21 March 2018
  • Chromosome positioning in sperm nucleus may have a functional significance by influencing the sequence of post-fertilization events. In this study we present data on preferential locations of chromosomes 1, 29 and X in Bos taurus spermatozoa. Here we demonstrate that the position of X chromosome in the sperm nucleus is more restricted as compared to the position of chromosome 1, which is about of the same size. Our data support the concept of the functional significance of genome architecture in male germline cells.

    Citation: Vadim Chagin, Andrei Zalensky, Igor Nazarov, Olga Mudrak. Preferable location of chromosomes 1, 29, and X in bovine spermatozoa[J]. AIMS Genetics, 2018, 5(2): 113-123. doi: 10.3934/genet.2018.2.113

    Related Papers:

  • Chromosome positioning in sperm nucleus may have a functional significance by influencing the sequence of post-fertilization events. In this study we present data on preferential locations of chromosomes 1, 29 and X in Bos taurus spermatozoa. Here we demonstrate that the position of X chromosome in the sperm nucleus is more restricted as compared to the position of chromosome 1, which is about of the same size. Our data support the concept of the functional significance of genome architecture in male germline cells.


    加载中
    [1] Greaves I, Svartman M, Wakefield M, et al. (2001) Chromosomal painting detects non-random chromosome arrangement in dasyurid marsupial sperm. Chromosome Res 9: 251–259. doi: 10.1023/A:1016656722134
    [2] Greaves I, Rens W, Ferguson-Smith M, et al. (2003) Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Res 11: 503–512. doi: 10.1023/A:1024982929452
    [3] Zalensky A, Zalenskaya I (2007) Organization of chromosomes in spermatozoa: an additional layer of epigenetic information. Biochem Soc Trans 35: 609–611. doi: 10.1042/BST0350609
    [4] Finch KA, Fonseka KG, Abogrein A, et al. (2008) Nuclear organization in human sperm: Preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod 23: 1263–1270. doi: 10.1093/humrep/den112
    [5] Olszewska M, Wiland E, Kurpisz M (2008) Positioning of chromosome 15, 18, X and Y centromeres in sperm cells of fertile individuals and infertile patients with increased level of aneuploidy. Chromosome Res 16: 875–890. doi: 10.1007/s10577-008-1246-2
    [6] Ioannou D, Griffin DK (2011) Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res 133: 269–279. doi: 10.1159/000322060
    [7] Alladin N, Moskovtsev SI, Russell H, et al. (2013) The three-dimensional image fnalysis of the chromocenter in motile and immotile human sperm. Syst Biol Reprod Med 59: 146–152. doi: 10.3109/19396368.2013.772679
    [8] Wiland E, Fraczek M, Olszewska M, et al. (2016) Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage. Sci Rep 6: 31614. doi: 10.1038/srep31614
    [9] Cremer T, Cremer M (2010) Chromosome Territories. Cold Spring Harb Perspect Biol 2: a003889.
    [10] Zalenskaya I, Zalensky A (2004) Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res 12: 163–173. doi: 10.1023/B:CHRO.0000013166.04629.97
    [11] Mudrak O, Tomilin N, Zalensky A (2005) Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci 118: 4541–4550. doi: 10.1242/jcs.02581
    [12] Manvelyan M, Hunstig F, Bhatt S, et al. (2008) Chromosome distribution in human sperm-a 3D multicolor banding-study. Mol Cytogenet 1: 25. doi: 10.1186/1755-8166-1-25
    [13] Wiland E, Zegało M, Kurpisz M (2008) Interindividual differences and alterations in the topology of chromosomes in human sperm nuclei of fertile donors and carriers of reciprocal translocations. Chromosome Res 16: 291–305. doi: 10.1007/s10577-007-1194-2
    [14] Mudrak O, Nazarov I, Jones E, et al. (2012) Positioning of chromosomes in human spermatozoa is determined by ordered centromere arrangement. PLoS ONE 7: e52944. doi: 10.1371/journal.pone.0052944
    [15] Millan N, Lau P, Hann M, et al. (2012) Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosome Res 20: 875–887. doi: 10.1007/s10577-012-9323-y
    [16] Ioannou D, Tempest H (2018) Does genome organization matter in spermatozoa? A refined hypothesis to awaken the silent vessel. Syst Biol Reprod Med 2018: 1–17.
    [17] Tsend-Ayush E, Dodge N, Mohr J, et al. (2009) Higher-order genome organization in platypus and chicken sperm and repositioning of sex chromosomes during mammalian evolution. Chromosoma 118: 53–69. doi: 10.1007/s00412-008-0177-1
    [18] Meyer-Ficca M, Muller-Navia J, Scherthan H (1998) Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci 111: 1363–1370.
    [19] Foster H, Abeydeera L, Griffin D, et al. (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118: 1811–1820. doi: 10.1242/jcs.02301
    [20] Zalenskaya IA, Zalensky AO (2002) Telomeres in mammalian male germline cells. Int Rev Cytol 218: 37–67. doi: 10.1016/S0074-7696(02)18011-9
    [21] Handel M (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296: 57–63. doi: 10.1016/j.yexcr.2004.03.008
    [22] Tanemura K, Ogura A, Cheong C, et al. (2005) Dynamic rearrangement of telomeres during spermatogenesis in mice. Dev Biol 281: 196–207. doi: 10.1016/j.ydbio.2005.02.025
    [23] Namekawa S, Park P, Zhang LF, et al. (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16: 660–667. doi: 10.1016/j.cub.2006.01.066
    [24] Kobayashi J, Kohsaka T, Sasada H, et al. (1999) Fluorescence in situ hybridization with Y chromosome-specific probe in decondensed bovine spermatozoa. Theriogenology 52: 1043–1054. doi: 10.1016/S0093-691X(99)00193-4
    [25] Habermann F, Winter A, Olsaker I, et al. (2005) Validation of sperm sexing in the cattle (Bos taurus) by dual colour fluorescence in situ hybridization. J Anim Breed Genet 122: 22–27. doi: 10.1111/j.1439-0388.2005.00488.x
    [26] Sbracia M, Baldi M, Cao D, et al. (2002) Preferential location of sex chromosomes, their aneuploidy in human sperm, and their role in determining sex chromosome aneuploidy in embryos after ICSI. Hum Reprod 17: 320–324. doi: 10.1093/humrep/17.2.320
    [27] Sin HS, Ichijima Y, Koh E, et al. (2012) Human postmeiotic sex chromatin and its impact on sex chromosome evolution. Genome Res 22: 827–836. doi: 10.1101/gr.135046.111
    [28] Powell D, Cran DG, Jennings C, et al. (1990) Spatial organization of repetitive DNA sequences in the bovine sperm nucleus. J Cell Sci 97: 185–191.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4736) PDF downloads(1173) Cited by(2)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog