AIMS Genetics, 2017, 4(1): 21-31. doi: 10.3934/genet.2017.1.21.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

1 Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
2 Fox Chase Cancer Center, Philadelphia, PA, 19111-2497, USA
3 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
4 Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard, Edouard-Montpetit, Montréal, QC H3T 1J4, Canada

DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose) polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA.
  Article Metrics

Keywords PARP-1 protein; DNA repair; chromatin structure; nucleosome; DNA-histone interactions

Citation: Daniel Sultanov, Nadezhda Gerasimova, Kseniya Kudryashova, Natalya Maluchenko, Elena Kotova, Marie-France Langelier, John Pascal, Mikhail Kirpichnikov, Alexey Feofanov, Vasily Studitsky. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy. AIMS Genetics, 2017, 4(1): 21-31. doi: 10.3934/genet.2017.1.21


  • 1. Beard BC, Wilson SH, Smerdon MJ (2003) Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc Natl Acad Sci U S A 100: 7465-7470.    
  • 2. Caldecott KW (2007) Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair (Amst) 6: 443-453.    
  • 3. De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84: 137-146.    
  • 4. Kraus WL (2008) Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20: 294-302.    
  • 5. Ali AA, Timinszky G, Arribas-Bosacoma R, et al. (2012) The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 19: 685-692.    
  • 6. Eustermann S, Wu WF, Langelier MF, et al. (2015) Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Mol Cell 60: 742-754.    
  • 7. Langelier MF, Planck JL, Roy S, et al. (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336: 728-732.    
  • 8. Martinez-Zamudio R, Ha HC (2012) Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol 32: 2490-2502.    
  • 9. Tanuma S, Kawashima K, Endo H (1985) Comparison of ADP-ribosylation of chromosomal proteins between intact and broken cells. Biochem Biophys Res Commun 127: 896-902.    
  • 10. Gunderson CC, Moore KN (2015) Olaparib: an oral PARP-1 and PARP-2 inhibitor with promising activity in ovarian cancer. Future Oncol 11: 747-757.    
  • 11. Fong PC, Boss DS, Yap TA, et al. (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361: 123-134.    
  • 12. Clark NJ, Kramer M, Muthurajan UM, et al. (2012) Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes. J Biol Chem 287: 32430-32439.    
  • 13. Kudryashova KS, Chertkov OV, Nikitin DV, et al. (2015) Preparation of Mononucleosomal Templates for Analysis of Transcription with RNA Polymerase Using spFRET. Methods Mol Biol 1288: 395-412.    
  • 14. Chertkov OV, Studitsky VM, Feofanov AV, et al. (2016) Change in conformation of linker DNA upon binding of histone Н1.5 to nucleosome: fluorescent microscopy of single complexes. Mosc Univ Biol Sci Bull 71: 108-113.
  • 15. Feofanov AV, Kudryashova KS, Chertkov OV, et al. (2015) Analysis of nucleosome transcription using single-particle FRET. Springer Proc Phys 164: 255-260.    
  • 16. Valieva ME, Armeev GA, Kudryashova KS, et al. (2016) Large-Scale ATP-Independent Nucleosome Unfolding by a Histone Chaperone. Nat Struct Mol Biol: In press.
  • 17. Langelier MF, Planck JL, Servent KM, et al. (2011) Purification of human PARP-1 and PARP-1 domains from Escherichia coli for structural and biochemical analysis. Methods Mol Biol 780: 209-226.    
  • 18. Kulaeva OI, Gaykalova DA, Pestov NA, et al. (2009) Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat Struct Mol Biol 16: 1272-1278.    
  • 19. Kireeva ML, Walter W, Tchernajenko V, et al. (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol Cell 9: 541-552.    
  • 20. Studitsky VM, Clark DJ, Felsenfeld G (1995) Overcoming a nucleosomal barrier to transcription. Cell 83: 19-27.    
  • 21. Vasudevan D, Chua EY, Davey CA (2010) Crystal structures of nucleosome core particles containing the '601' strong positioning sequence. J Mol Biol 403: 1-10.    
  • 22. Thastrom A, Lowary PT, Widlund HR, et al. (1999) Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol 288: 213-229.    
  • 23. Muthurajan UM, Hepler MR, Hieb AR, et al. (2014) Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proc Natl Acad Sci U S A 111: 12752-12757.    
  • 24. Zahradka P, Ebisuzaki K (1982) A shuttle mechanism for DNA-protein interactions. The regulation of poly(ADP-ribose) polymerase. Eur J Biochem 127: 579-585.
  • 25. Ogata N, Ueda K, Kawaichi M, et al. (1981) Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J Biol Chem 256: 4135-4137.
  • 26. Steffen JD, McCauley MM, Pascal JM (2016) Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Nucleic Acids Res: gkw710.
  • 27. Dawicki-McKenna JM, Langelier MF, DeNizio JE, et al. (2015) PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Mol Cell 60: 755-768.    
  • 28. Lee JY, Lee TH (2012) Effects of DNA methylation on the structure of nucleosomes. J Am Chem Soc 134: 173-175.    
  • 29. Lee JY, Wei S, Lee TH (2011) Effects of histone acetylation by Piccolo NuA4 on the structure of a nucleosome and the interactions between two nucleosomes. J Biol Chem 286: 11099-11109.    
  • 30. Chang HW, Shaytan AK, Hsieh FK, et al. (2013) Structural Analysis of the Key Intermediate Formed during Transcription through a Nucleosome. Trends Cell Mol Biol 8: 13-23.
  • 31. Pestov NA, Gerasimova NS, Kulaeva OI, et al. (2015) Structure of transcribed chromatin is a sensor of DNA damage. Sci Adv 1: e1500021.    
  • 32. Gaykalova DA, Kulaeva OI, Volokh O, et al. (2015) Structural analysis of nucleosomal barrier to transcription. Proc Natl Acad Sci U S A 112: E5787-5795.    
  • 33. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25: 2227-2241.    
  • 34. Bohm V, Hieb AR, Andrews AJ, et al. (2011) Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res 39: 3093-3102.    
  • 35. Tomschik M, Zheng H, van Holde K, et al. (2005) Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 102: 3278-3283.    
  • 36. Zlatanova J, Bishop TC, Victor JM, et al. (2009) The nucleosome family: dynamic and growing. Structure 17: 160-171.    
  • 37. Xu Y, Ayrapetov MK, Xu C, et al. (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48: 723-733.


This article has been cited by

  • 1. A. V. Lyubitelev, V. M. Studitsky, A. V. Feofanov, M. P. Kirpichnikov, Effect of sodium and potassium ions on conformation of linker parts of nucleosomes, Moscow University Biological Sciences Bulletin, 2017, 72, 3, 146, 10.3103/S0096392517030075
  • 2. O. V. Chertkov, M. E. Valieva, N. V. Malyuchenko, A. V. Feofanov, Analysis of Nucleosome Structure in Polyacrylamide Gel by the Förster Resonance Energy Transfer Method, Moscow University Biological Sciences Bulletin, 2017, 72, 4, 196, 10.3103/S0096392517040034
  • 3. Giovanna De Matteis, Anna Reale, Francesco Grandoni, Mirella L. Meyer-Ficca, Maria Carmela Scatà, Ralph G. Meyer, Luca Buttazzoni, Bianca Moioli, Assessment of Poly(ADP-ribose) Polymerase1 (PARP1) expression and activity in cells purified from blood and milk of dairy cattle, Veterinary Immunology and Immunopathology, 2018, 10.1016/j.vetimm.2018.06.013
  • 4. Grigoriy A Armeev, Anna K Gribkova, Iunona Pospelova, Galina A Komarova, Alexey K Shaytan, Linking chromatin composition and structural dynamics at the nucleosome level, Current Opinion in Structural Biology, 2019, 56, 46, 10.1016/
  • 5. Natalya Maluchenko, Dmitry Nilov, Alexey Feofanov, Alexandra Lys, Mikhail Kutuzov, Nadezhda Gerasimova, Vasily Studitsky, 7-Methylguanine Traps PARP-1 on Nucleosomes: spFRET Microscopy Study, Microscopy and Microanalysis, 2019, 25, S2, 1282, 10.1017/S1431927619007141
  • 6. N. V. Malyuchenko, E. Yu. Kotova, M. P. Kirpichnikov, V. M. Studitsky, A. V. Feofanov, PARP1 Binding to DNA Breaks and Hairpins Alters Nucleosome Structure, Moscow University Biological Sciences Bulletin, 2019, 74, 3, 158, 10.3103/S0096392519030076
  • 7. Deepti Sharma, Louis De Falco, Sivaraman Padavattan, Chang Rao, Susana Geifman-Shochat, Chuan-Fa Liu, Curt A. Davey, PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome, Nature Communications, 2019, 10, 1, 10.1038/s41467-019-13641-0
  • 8. N. V. Maluchenko, D. S. Sultanov, E. Yu. Kotova, M. P. Kirpichnikov, V. M. Studitsky, A. V. Feofanov, Histone Tails Promote PARP1-Dependent Structural Rearrangements in Nucleosomes, Doklady Biochemistry and Biophysics, 2019, 489, 1, 377, 10.1134/S1607672919060061
  • 9. Dmitry Nilov, Natalya Maluchenko, Tatyana Kurgina, Sergey Pushkarev, Alexandra Lys, Mikhail Kutuzov, Nadezhda Gerasimova, Alexey Feofanov, Vytas Švedas, Olga Lavrik, Vasily M. Studitsky, Molecular Mechanisms of PARP-1 Inhibitor 7-Methylguanine, International Journal of Molecular Sciences, 2020, 21, 6, 2159, 10.3390/ijms21062159

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Alexey Feofanov, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved