Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Cardiac biomarkers in dialysis

1 Department of Nephrology, Princess Alexandra Hospital, Australia
2 Australasian Kidney Trials Network, School of Medicine, University of Queensland, Brisbane, Australia
3 Translational Research Institute, Brisbane, Australia

Cardiovascular disease is the major cause of death, accounting for approximately 40 percent of all-cause mortality in patients receiving either hemodialysis or peritoneal dialysis. Cardiovascular risk stratification is an important aspect of managing dialysis patients as it enables early identification of high-risk patients, so therapeutic interventions can be optimized to lower cardiovascular morbidity and mortality. Biomarkers can detect early stages of cardiac injury so timely intervention can be provided. The B-type natriuretic peptides (Brain Natriuretic peptide [BNP] and N-terminal pro-B-type natriuretic peptide [NT-proBNP]) and troponins have been shown to predict mortality in dialysis patients. Suppression of tumorigenicity 2 (ST2) and galectin-3 are new emerging biomarkers in the field of heart failure in both the general and dialysis populations. This article aims to discuss the current evidence regarding cardiac biomarker use to diagnose myocardial injury and monitor the risk of major adverse cardiovascular events in patients undergoing dialysis.
  Article Metrics

Keywords Biomarkers; Cardiovascular disease; Chronic kidney disease; Dialysis; Galectin; Hemodialysis; Natriuretic peptide; brain; N-terminal pro-B-type natriuretic peptide; Suppression of tumorigenicity 2; Troponin

Citation: Usman Mahmood, David W Johnson, Magid A Fahim. Cardiac biomarkers in dialysis. AIMS Genetics, 2017, 4(1): 1-20. doi: 10.3934/genet.2017.1.1


  • 1. Cheung AK, Sarnak MJ, Yan G, et al. (2004) Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int 65: 2380-2389.    
  • 2. Foley RN, Parfrey PS, Harnett JD, et al. (1995) Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 47: 186-192.    
  • 3. ANZDATA Registry. 38th Report, Chapter 3: Mortality in End Stage Kidney Disease. Australia and New Zealand Dialysis and Transplant Registry, Adelaide, Australia. 2016.
  • 4. Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32: S112-119.    
  • 5. Longenecker JC, Coresh J, Powe NR, et al. (2002) Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE Study. J Am Soc Nephrol 13: 1918-1927.    
  • 6. Ruilope LM, van Veldhuisen DJ, Ritz E, et al. (2001) Renal function: the Cinderella of cardiovascular risk profile. J Am Coll Cardiol 38: 1782-1787.    
  • 7. Agarwal R (2005) Hypertension in chronic kidney disease and dialysis: pathophysiology and management. Cardiol Clin 23: 237-248.    
  • 8. Neumann J, Ligtenberg G, Klein II, et al. (2004) Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int 65: 1568-1576.    
  • 9. Covic A, Kothawala P, Bernal M, et al. (2009) Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol Dial Transplant 24: 1506-1523.    
  • 10. Kaysen GA, Eiserich JP (2004) The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J Am Soc Nephrol 15: 538-548.    
  • 11. Wang AY, Lam CW, Chan IH, et al. (2010) Sudden cardiac death in end-stage renal disease patients: a 5-year prospective analysis. Hypertension 56: 210-216.    
  • 12. Martinez-Rumayor A, Richards AM, Burnett JC, et al. (2008) Biology of the natriuretic peptides. Am J Cardiol 101: 3-8.
  • 13. Mukoyama M, Nakao K, Hosoda K, et al. (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87: 1402-1412.
  • 14. Yasue H, Yoshimura M, Sumida H, et al. (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90: 195-203.    
  • 15. Gerbes AL, Dagnino L, Nguyen T, et al. (1994) Transcription of brain natriuretic peptide and atrial natriuretic peptide genes in human tissues. J Clin Endocrinol Metab 78: 1307-1311.
  • 16. Kinnunen P, Vuolteenaho O, Ruskoaho H (1993) Mechanisms of atrial and brain natriuretic peptide release from rat ventricular myocardium: effect of stretching. Endocrinology 132: 1961-1970.
  • 17. Bruneau BG, Piazza LA, de Bold AJ (1997) BNP gene expression is specifically modulated by stretch and ET-1 in a new model of isolated rat atria. Am J Physiol 273: H2678-2686.
  • 18. Liang F, Gardner DG (1999) Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J Clin Invest 104: 1603-1612.    
  • 19. Bibbins-Domingo K, Ansari M, Schiller NB, et al. (2003) B-type natriuretic peptide and ischemia in patients with stable coronary disease: data from the Heart and Soul study. Circulation 108: 2987-2992.    
  • 20. de Bold AJ (2009) Cardiac natriuretic peptides gene expression and secretion in inflammation. J Investig Med 57: 29-32.    
  • 21. Bruneau BG, Piazza LA, de Bold AJ (1996) Alpha 1-adrenergic stimulation of isolated rat atria results in discoordinate increases in natriuretic peptide secretion and gene expression and enhances Egr-1 and c-Myc expression. Endocrinology 137: 137-143.
  • 22. Wiese S, Breyer T, Dragu A, et al. (2000) Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 102: 3074-3079.    
  • 23. Maisel AS, Krishnaswamy P, Nowak RM, et al. (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347: 161-167.    
  • 24. McCullough PA, Nowak RM, McCord J, et al. (2002) B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation 106: 416-422.    
  • 25. Doust JA, Pietrzak E, Dobson A, et al. (2005) How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. Bmj 330: 625.    
  • 26. Troughton RW, Frampton CM, Yandle TG, et al. (2000) Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355: 1126-1130.    
  • 27. Pfisterer M, Buser P, Rickli H, et al. (2009) BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. Jama 301: 383-392.    
  • 28. Berger R, Moertl D, Peter S, et al. (2010) N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol 55: 645-653.    
  • 29. Eurlings LW, van Pol PE, Kok WE, et al. (2010) Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J Am Coll Cardiol 56: 2090-2100.    
  • 30. Persson H, Erntell H, Eriksson B, et al. (2010) Improved pharmacological therapy of chronic heart failure in primary care: a randomized Study of NT-proBNP Guided Management of Heart Failure--SIGNAL-HF (Swedish Intervention study—Guidelines and NT-proBNP AnaLysis in Heart Failure). Eur J Heart Fail 12: 1300-1308.    
  • 31. Lainchbury JG, Troughton RW, Strangman KM, et al. (2009) N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol 55: 53-60.    
  • 32. Shah MR, Califf RM, Nohria A, et al. (2011) The STARBRITE trial: a randomized, pilot study of B-type natriuretic peptide-guided therapy in patients with advanced heart failure. J Card Fail 17: 613-621.    
  • 33. Karlstrom P, Alehagen U, Boman K, et al. (2011) Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur J Heart Fail 13: 1096-1103.    
  • 34. Januzzi JL, Jr., Rehman SU, Mohammed AA, et al. (2011) Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 58: 1881-1889.    
  • 35. Jourdain P, Jondeau G, Funck F, et al. (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 49: 1733-1739.    
  • 36. Anguita M, Esteban F, Castillo JC, et al. (2010) [Usefulness of brain natriuretic peptide levels, as compared with usual clinical control, for the treatment monitoring of patients with heart failure]. Med Clin (Barc) 135: 435-440.    
  • 37. Troughton RW, Frampton CM, Brunner-La Rocca HP, et al. (2014) Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur Heart J 35: 1559-1567.    
  • 38. Mant J, Al-Mohammad A, Swain S, et al. (2011) Management of chronic heart failure in adults: synopsis of the National Institute For Health and clinical excellence guideline. Ann Intern Med 155: 252-259.    
  • 39. van Kimmenade RR, Januzzi JL, Jr., Bakker JA, et al. (2009) Renal clearance of B-type natriuretic peptide and amino terminal pro-B-type natriuretic peptide a mechanistic study in hypertensive subjects. J Am Coll Cardiol 53: 884-890.    
  • 40. Tsai SH, Lin YY, Chu SJ, et al. (2010) Interpretation and use of natriuretic peptides in non-congestive heart failure settings. Yonsei Med J 51: 151-163.    
  • 41. Januzzi JL, van Kimmenade R, Lainchbury J, et al. (2006) NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 27: 330-337.
  • 42. Gutierrez OM, Tamez H, Bhan I, et al. (2008) N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations in hemodialysis patients: prognostic value of baseline and follow-up measurements. Clin Chem 54: 1339-1348.    
  • 43. Wang AY, Lam CW, Yu CM, et al. (2007) N-terminal pro-brain natriuretic peptide: an independent risk predictor of cardiovascular congestion, mortality, and adverse cardiovascular outcomes in chronic peritoneal dialysis patients. J Am Soc Nephrol 18: 321-330.    
  • 44. Satyan S, Light RP, Agarwal R (2007) Relationships of N-terminal pro-B-natriuretic peptide and cardiac troponin T to left ventricular mass and function and mortality in asymptomatic hemodialysis patients. Am J Kidney Dis 50: 1009-1019.    
  • 45. Paniagua R, Amato D, Mujais S, et al. (2008) Predictive value of brain natriuretic peptides in patients on peritoneal dialysis: results from the ADEMEX trial. Clin J Am Soc Nephrol 3: 407-415.    
  • 46. David S, Kumpers P, Seidler V, et al. (2008) Diagnostic value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) for left ventricular dysfunction in patients with chronic kidney disease stage 5 on haemodialysis. Nephrol Dial Transplant 23: 1370-1377.
  • 47. Parfrey PS (2000) Cardiac disease in dialysis patients: diagnosis, burden of disease, prognosis, risk factors and management. Nephrol Dial Transplant 15 Suppl 5: 58-68.
  • 48. Fahim MA, Hayen A, Horvath AR, et al. (2015) N-terminal pro-B-type natriuretic peptide variability in stable dialysis patients. Clin J Am Soc Nephrol 10: 620-629.    
  • 49. Lippi G, Tessitore N, Luca Salvagno G, et al. (2007) Influence of haemodialysis on the NT-proBNP plasma concentration. Clin Chem Lab Med 45: 1414-1415.
  • 50. Wahl HG, Graf S, Renz H, et al. (2004) Elimination of the cardiac natriuretic peptides B-type natriuretic peptide (BNP) and N-terminal proBNP by hemodialysis. Clin Chem 50: 1071-1074.    
  • 51. Clerico A, Caprioli R, Del Ry S, et al. (2001) Clinical relevance of cardiac natriuretic peptides measured by means of competitive and non-competitive immunoassay methods in patients with renal failure on chronic hemodialysis. J Endocrinol Invest 24: 24-30.    
  • 52. Racek J, Kralova H, Trefil L, et al. (2006) Brain natriuretic peptide and N-terminal proBNP in chronic haemodialysis patients. Nephron Clin Pract 103: c162-172.    
  • 53. Dautin G, Boudjeltia S, Soltani Z, et al. (2007) The changes in NT-proBNP plasma concentrations during dialysis are highly dependent of the dialysis membrane ultrafiltration coefficient. Clin Chim Acta 376: 237-239.    
  • 54. Bargnoux AS, Klouche K, Fareh J, et al. (2008) Prohormone brain natriuretic peptide (proBNP), BNP and N-terminal-proBNP circulating levels in chronic hemodialysis patients. Correlation with ventricular function, fluid removal and effect of hemodiafiltration. Clin Chem Lab Med 46: 1019-1024.
  • 55. Sheen V, Bhalla V, Tulua-Tata A, et al. (2007) The use of B-type natriuretic peptide to assess volume status in patients with end-stage renal disease. Am Heart J 153: 244.e241-245.
  • 56. Flemmer M, Rajab H, Mathena T, et al. (2008) Blood B-type natriuretic peptide and dialysis: present assessment and future analyses. South Med J 101: 1094-1100.    
  • 57. Chiarelli G, Beaulieu M, Taylor P, et al. (2011) Elimination of BNP by peritoneal dialysis: investigation of analytical issues. Perit Dial Int 31: 199-202.
  • 58. Obineche EN, Pathan JY, Fisher S, et al. (2006) Natriuretic peptide and adrenomedullin levels in chronic renal failure and effects of peritoneal dialysis. Kidney Int 69: 152-156.    
  • 59. Granja CA, Tailor PT, Gorban-Brennan N, et al. (2007) Brain natriuretic peptide and impedance cardiography to assess volume status in peritoneal dialysis patients. Adv Perit Dial 23: 155-160.
  • 60. Lee JA, Kim DH, Yoo SJ, et al. (2006) Association between serum n-terminal pro-brain natriuretic peptide concentration and left ventricular dysfunction and extracellular water in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 26: 360-365.
  • 61. Booth J, Pinney J, Davenport A (2010) N-terminal proBNP--marker of cardiac dysfunction, fluid overload, or malnutrition in hemodialysis patients? Clin J Am Soc Nephrol 5: 1036-1040.    
  • 62. Gangji AS, Helal BA, Churchill DN, et al. (2008) Association between N-terminal propeptide B-type natriuretic peptide and markers of hypervolemia. Perit Dial Int 28: 308-311.
  • 63. Jacobs LH, van de Kerkhof JJ, Mingels AM, et al. (2010) Inflammation, overhydration and cardiac biomarkers in haemodialysis patients: a longitudinal study. Nephrol Dial Transplant 25: 243-248.    
  • 64. Lee SW, Song JH, Kim GA, et al. (2003) Plasma brain natriuretic peptide concentration on assessment of hydration status in hemodialysis patient. Am J Kidney Dis 41: 1257-1266.    
  • 65. Fagugli RM, Palumbo B, Ricciardi D, et al. (2003) Association between brain natriuretic peptide and extracellular water in hemodialysis patients. Nephron Clin Pract 95: c60-66.
  • 66. Sommerer C, Beimler J, Schwenger V, et al. (2007) Cardiac biomarkers and survival in haemodialysis patients. Eur J Clin Invest 37: 350-356.    
  • 67. Bavbek N, Akay H, Altay M, et al. (2007) Serum BNP concentration and left ventricular mass in CAPD and automated peritoneal dialysis patients. Perit Dial Int 27: 663-668.
  • 68. Zoccali C, Mallamaci F, Benedetto FA, et al. (2001) Cardiac natriuretic peptides are related to left ventricular mass and function and predict mortality in dialysis patients. J Am Soc Nephrol 12: 1508-1515.
  • 69. Foley RN, Curtis BM, Randell EW, et al. (2010) Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin J Am Soc Nephrol 5: 805-813.    
  • 70. Mallamaci F, Zoccali C, Tripepi G, et al. (2001) Diagnostic potential of cardiac natriuretic peptides in dialysis patients. Kidney Int 59: 1559-1566.    
  • 71. Choi SY, Lee JE, Jang EH, et al. (2008) Association between changes in N-terminal pro-brain natriuretic peptide levels and changes in left ventricular mass index in stable hemodialysis patients. Nephron Clin Pract 110: c93-100.    
  • 72. Takase H, Dohi Y, Toriyama T, et al. (2011) B-type natriuretic peptide levels and cardiovascular risk in patients with diastolic dysfunction on chronic haemodialysis: cross-sectional and observational studies. Nephrol Dial Transplant 26: 683-690.    
  • 73. Goto T, Takase H, Toriyama T, et al. (2002) Increased circulating levels of natriuretic peptides predict future cardiac event in patients with chronic hemodialysis. Nephron 92: 610-615.    
  • 74. Tripepi G, Mattace-Raso F, Mallamaci F, et al. (2009) Biomarkers of left atrial volume: a longitudinal study in patients with end stage renal disease. Hypertension 54: 818-824.    
  • 75. Wang AY, Wang M, Lam CW, et al. (2011) Heart failure in long-term peritoneal dialysis patients: a 4-year prospective analysis. Clin J Am Soc Nephrol 6: 805-812.    
  • 76. Winkler K, Wanner C, Drechsler C, et al. (2008) Change in N-terminal-pro-B-type-natriuretic-peptide and the risk of sudden death, stroke, myocardial infarction, and all-cause mortality in diabetic dialysis patients. Eur Heart J 29: 2092-2099.    
  • 77. Breidthardt T, Kalbermatter S, Socrates T, et al. (2011) Increasing B-type natriuretic peptide levels predict mortality in unselected haemodialysis patients. Eur J Heart Fail 13: 860-867.    
  • 78. Doust J (2010) Qualification versus validation of biomarkers. Scand J Clin Lab Invest Suppl 242: 40-43.
  • 79. Katus HA, Remppis A, Scheffold T, et al. (1991) Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 67: 1360-1367.    
  • 80. Turer AT, Addo TA, Martin JL, et al. (2011) Myocardial ischemia induced by rapid atrial pacing causes troponin T release detectable by a highly sensitive assay: insights from a coronary sinus sampling study. J Am Coll Cardiol 57: 2398-2405.    
  • 81. Hessel MH, Atsma DE, van der Valk EJ, et al. (2008) Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch 455: 979-986.    
  • 82. Thygesen K, Alpert JS, Jaffe AS, et al. (2012) Third universal definition of myocardial infarction. Circulation 126: 2020-2035.    
  • 83. Keddis MT, El-Zoghby ZM, El Ters M, et al. (2013) Cardiac troponin T before and after kidney transplantation: determinants and implications for posttransplant survival. Am J Transplant 13: 406-414.    
  • 84. Wu AH, Feng YJ, Roper L, et al. (1997) Cardiac troponins T and I before and after renal transplantation. Clin Chem 43: 411-412.
  • 85. Fredericks S, Chang R, Gregson H, et al. (2001) Circulating cardiac troponin-T in patients before and after renal transplantation. Clin Chim Acta 310: 199-203.    
  • 86. Bozbas H, Korkmaz ME, Atar I, et al. (2004) Serum levels of cardiac enzymes before and after renal transplantation. Clin Cardiol 27: 559-562.    
  • 87. Ellis K, Dreisbach AW, Lertora JL (2001) Plasma elimination of cardiac troponin I in end-stage renal disease. South Med J 94: 993-996.    
  • 88. Fahie-Wilson MN, Carmichael DJ, Delaney MP, et al. (2006) Cardiac troponin T circulates in the free, intact form in patients with kidney failure. Clin Chem 52: 414-420.    
  • 89. Jacobs LH, van de Kerkhof J, Mingels AM, et al. (2009) Haemodialysis patients longitudinally assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and cardiac troponin I assays. Ann Clin Biochem 46: 283-290.    
  • 90. Kumar N, Michelis MF, DeVita MV, et al. (2011) Troponin I levels in asymptomatic patients on haemodialysis using a high-sensitivity assay. Nephrol Dial Transplant 26: 665-670.    
  • 91. Wolley M, Stewart R, Curry E, et al. (2013) Variation in and prognostic importance of troponin T measured using a high-sensitivity assay in clinically stable haemodialysis patients. Clin Kidney J 6: 402-409.    
  • 92. Hill SA, Cleve R, Carlisle E, et al. (2009) Intra-individual variability in troponin T concentration in dialysis patients. Clin Biochem 42: 991-995.    
  • 93. Pianta TJ, Horvath AR, Ellis VM, et al. (2012) Cardiac high-sensitivity troponin T measurement: a layer of complexity in managing haemodialysis patients. Nephrology (Carlton) 17: 636-641.    
  • 94. Katus HA, Haller C, Muller-Bardorff M, et al. (1995) Cardiac troponin T in end-stage renal disease patients undergoing chronic maintenance hemodialysis. Clin Chem 41: 1201-1203.
  • 95. Collinson PO, Stubbs PJ, Rosalki SB (1995) Cardiac troponin T in renal disease. Clin Chem 41: 1671-1673.
  • 96. Li D, Jialal I, Keffer J (1996) Greater frequency of increased cardiac troponin T than increased cardiac troponin I in patients with chronic renal failure. Clin Chem 42: 114-115.
  • 97. Hickman PE, McGill D, Potter JM, et al. (2015) Multiple biomarkers including cardiac troponins T and I measured by high-sensitivity assays, as predictors of long-term mortality in patients with chronic renal failure who underwent dialysis. Am J Cardiol 115: 1601-1606.    
  • 98. Lippi G, Tessitore N, Montagnana M, et al. (2008) Influence of sampling time and ultrafiltration coefficient of the dialysis membrane on cardiac troponin I and T. Arch Pathol Lab Med 132: 72-76.
  • 99. Gaze DC, Collinson PO (2014) Cardiac troponin I but not cardiac troponin T adheres to polysulfone dialyser membranes in an in vitro haemodialysis model: explanation for lower serum cTnI concentrations following dialysis. Open Heart 1: e000108.    
  • 100. Nunes JP, Sampaio S, Cerqueira A, et al. (2015) Anti-troponin I antibodies in renal transplant patients. Rev Port Cardiol 34: 85-89.
  • 101. Sacchetti A, Harris R, Patel K, et al. (1991) Emergency department presentation of renal dialysis patients: indications for EMS transport directly to dialysis centers. J Emerg Med 9: 141-144.    
  • 102. McDonald SP, Tong B (2011) Morbidity burden of end-stage kidney disease in Australia: hospital separation rates among people receiving kidney replacement therapy. Nephrology (Carlton) 16: 758-766.    
  • 103. Herzog CA, Littrell K, Arko C, et al. (2007) Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. Circulation 116: 1465-1472.    
  • 104. Sosnov J, Lessard D, Goldberg RJ, et al. (2006) Differential symptoms of acute myocardial infarction in patients with kidney disease: a community-wide perspective. Am J Kidney Dis 47: 378-384.    
  • 105. Jaffe AS, Apple FS (2012) The third Universal Definition of Myocardial Infarction--moving forward. Clin Chem 58: 1727-1728.    
  • 106. Wu AH, Jaffe AS, Apple FS, et al. (2007) National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem 53: 2086-2096.    
  • 107. Fahim MA, Hayen AD, Horvath AR, et al. (2015) Biological variation of high sensitivity cardiac troponin-T in stable dialysis patients: implications for clinical practice. Clin Chem Lab Med 53: 715-722.
  • 108. Michos ED, Wilson LM, Yeh HC, et al. (2014) Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis. Ann Intern Med 161: 491-501.    
  • 109. (2005) K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45: S1-153.
  • 110. Yancy CW, Jessup M, Bozkurt B, et al. (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62: e147-239.    
  • 111. Mueller T, Leitner I, Egger M, et al. (2015) Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin Chim Acta 445: 155-160.    
  • 112. Mueller T, Dieplinger B (2013) The Presage((R)) ST2 Assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn 13: 13-30.    
  • 113. Lippi G, Cervellin G (2014) Risk assessment of post-infarction heart failure. Systematic review on the role of emerging biomarkers. Crit Rev Clin Lab Sci 51: 13-29.
  • 114. Weinberg EO, Shimpo M, De Keulenaer GW, et al. (2002) Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106: 2961-2966.    
  • 115. Demyanets S, Speidl WS, Tentzeris I, et al. (2014) Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One 9: e95055.    
  • 116. Dieplinger B, Egger M, Haltmayer M, et al. (2014) Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: results from the Ludwigshafen risk and cardiovascular health study. Clin Chem 60: 530-540.    
  • 117. Bayes-Genis A, de Antonio M, Galan A, et al. (2012) Combined use of high-sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur J Heart Fail 14: 32-38.    
  • 118. Lippi G, Salvagno GL, Robuschi F, et al. (2014) Influence of dipyridamole stress echocardiography on galectin-3, amino-terminal B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin T. Acta Cardiol 69: 377-383.
  • 119. Krzeslak A, Lipinska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9: 305-328.
  • 120. Sharma UC, Pokharel S, van Brakel TJ, et al. (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110: 3121-3128.    
  • 121. Suarez G, Meyerrose G (2014) Heart failure and galectin 3. Ann Transl Med 2: 86.
  • 122. Chen A, Hou W, Zhang Y, et al. (2015) Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. Int J Cardiol 182: 168-170.    
  • 123. Winter MP, Wiesbauer F, Alimohammadi A, et al. (2016) Soluble galectin-3 is associated with premature myocardial infarction. Eur J Clin Invest 46: 386-391.    
  • 124. Yancy CW, Jessup M, Bozkurt B, et al. (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128: e240-327.    
  • 125. Hogas S, Schiller A, Voroneanu L, et al. (2016) Predictive Value for Galectin 3 and Cardiotrophin 1 in Hemodialysis Patients. Angiology 67: 854-859.    
  • 126. Gurel OM, Yilmaz H, Celik TH, et al. (2015) Galectin-3 as a new biomarker of diastolic dysfunction in hemodialysis patients. Herz 40: 788-794.    
  • 127. de Boer RA, van der Velde AR, Mueller C, et al. (2014) Galectin-3: a modifiable risk factor in heart failure. Cardiovasc Drugs Ther 28: 237-246.    
  • 128. Hagstrom E, James SK, Bertilsson M, et al. (2016) Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study. Eur Heart J 37: 1325-1333.    
  • 129. Jougasaki M, Rodeheffer RJ, Redfield MM, et al. (1996) Cardiac secretion of adrenomedullin in human heart failure. J Clin Invest 97: 2370-2376.    
  • 130. Nishikimi T, Saito Y, Kitamura K, et al. (1995) Increased plasma levels of adrenomedullin in patients with heart failure. J Am Coll Cardiol 26: 1424-1431.    
  • 131. Maisel A, Mueller C, Nowak R, et al. (2010) Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol 55: 2062-2076.    
  • 132. Giannopoulos G, Deftereos S, Panagopoulou V, et al. (2013) Copeptin as a biomarker in cardiac disease. Curr Top Med Chem 13: 231-240.    
  • 133. Reid P, Holen I (2009) Pathophysiological roles of osteoprotegerin (OPG). Eur J Cell Biol 88: 1-17.
  • 134. Nybo M, Rasmussen LM (2008) The capability of plasma osteoprotegerin as a predictor of cardiovascular disease: a systematic literature review. Eur J Endocrinol 159: 603-608.    
  • 135. Rosenberg M, Zugck C, Nelles M, et al. (2008) Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail 1: 43-49.    
  • 136. Rabin KR, Kamari Y, Avni I, et al. (2005) Adiponectin: linking the metabolic syndrome to its cardiovascular consequences. Expert Rev Cardiovasc Ther 3: 465-471.    
  • 137. Zoccali C, Mallamaci F, Panuccio V, et al. (2003) Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int Suppl: S98-102.
  • 138. Zoccali C, Mallamaci F, Tripepi G, et al. (2002) Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol 13: 134-141.
  • 139. Yan AT, Yan RT, Spinale FG, et al. (2006) Plasma matrix metalloproteinase-9 level is correlated with left ventricular volumes and ejection fraction in patients with heart failure. J Card Fail 12: 514-519.    
  • 140. Kecebas M, Gullulu S, Sag S, et al. (2014) Serum fetuin-A levels in patients with systolic heart failure. Acta Cardiol 69: 399-405.
  • 141. Morrow DA, Cannon CP, Rifai N, et al. (2001) Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. Jama 286: 2405-2412.    
  • 142. Sandoval Y, Herzog CA, Love SA, et al. (2016) Prognostic Value of Serial Changes in High-Sensitivity Cardiac Troponin I and T over 3 Months Using Reference Change Values in Hemodialysis Patients. Clin Chem 62: 631-638.    


This article has been cited by

  • 1. Abdul-Hassan Mahdi Salih, Saad Mashkoor Waleed, A.A Abdul-Aziz, Ali B. Roomi, Iqbal Ajrash Sabr, Abdalreda Abed Hatem, Shaymaa Jawad Abdulrahman, The Importance of Brain Natriuretic Peptide in Assessment Left Ventricle Function Among Patient with Chronic Kidney Disease on Maintenance Hemodialysis: The Impact of the Dialysis Session, Journal of Physics: Conference Series, 2019, 1279, 012053, 10.1088/1742-6596/1279/1/012053
  • 2. Akira Hara, Masayuki Niwa, Kei Noguchi, Tomohiro Kanayama, Ayumi Niwa, Mikiko Matsuo, Yuichiro Hatano, Hiroyuki Tomita, Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases, Biomolecules, 2020, 10, 3, 389, 10.3390/biom10030389

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, David W Johnson, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved