Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Associations of CYP1A1 gene polymorphisms and risk of breast cancer in Indian women: a meta-analysis

1 Center for Research and Development, Angeles University Foundation, Angeles City 2009, Philippines;
2 Genotoxicity Laboratory, Toxicology Division, Central Drug Research Institute, Lucknow 226 001, Utar Pradesh, India;
3 College of Allied Medical Profession, Angeles University Foundation, Angeles City 2009 Philippines;
4 Department of Gynecology and Obstetrics-Faculdade de Medicina do ABC, Human Reproduction and Genetics Center, Avenida Prıncipe de Gales, 821, Santo Andre, SP, 09060-650, Brazil;
5 Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, Canada M9P 3V6

Special Issues: Genetics of Breast Cancer

Reported associations of CYP1A1 polymorphisms with breast cancer have been inconsistent. In this meta-analysis examining breast cancer associations of three CYP1A1 polymorphisms (M1, M2 and M4) among Indian women may yield information that may be of clinical and epidemiological use for this particular demography. We searched MEDLINE using PubMed and Embase for association studies. From seven published case-control studies, we estimated overall associations and applied subgroup analysis to explore differential effects. All three polymorphisms exhibited overall increased risk, significant in M1 (OR 1.61-1.65, p = 0.04) and M4 (OR 2.02-3.92, p = 0.02-0.04). Differential effects were observed only in the M1 polymorphism where M1 effects were significant in South Indians (OR 2.20-4.34, p < 0.0001) but not the North population, who were at reduced risk (OR 0.64-0.77, p = 0.03-0.55). These populations were not materially different in regard to M2 and M4 as did the women stratified by menopausal status. In this meta-analysis, M1 and M4 effects may render Indian women susceptible, but may be limited by heterogeneity of the studies. Differential effects of the M1 polymorphism in breast cancer render South Indians susceptible compared to those in the North.
  Article Metrics


1. Dikshit R, Gupta PC, Ramasundarahettige C, et al. (2012) Cancer mortality in India: a nationally representative survey. Lancet 379: 1807-1816.    

2. Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7: 659-672.    

3. Nickels S, Truong T, Hein R, et al. (2013) Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet 9: e1003284.    

4. Chen C, Huang Y, Li Y, et al. (2007) Cytochrome P450 1A1 (CYP1A1) T3801C and A2455G polymorphisms in breast cancer risk: a meta-analysis. J Hum Genet 52: 423-435.    

5. Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122: 459-469.    

6. Yao L, Yu X, Yu L (2010) Lack of significant association between CYP1A1 T3801C polymorphism and breast cancer risk: a meta-analysis involving 25,087 subjects. Breast Cancer Res Treat 122: 503-507.    

7. Syamala VS, Syamala V, Sheeja VR, et al. (2010) Possible risk modification by polymorphisms of estrogen metabolizing genes in familial breast cancer susceptibility in an Indian population. Cancer Invest 28: 304-311.    

8. Surekha D, Sailaja K, Rao DN, et al. (2009) Association of CYP1A1*2 polymorphisms with breast cancer risk: a case control study. Indian J Med Sci 63: 13-20.    

9. Singh V, Rastogi N, Sinha A, et al. (2007) A study on the association of cytochrome-P450 1A1 polymorphism and breast cancer risk in north Indian women. Breast Cancer Res Treat 101: 73-81.    

10. Singh N, Mitra AK, Garg VK, et al. (2007) Association of CYP1A1 polymorphisms with breast cancer in North Indian women. Oncol Res 16: 587-597.    

11. Naushad SM, Reddy CA, Rupasree Y, et al. (2011) Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys 61: 715-723.    

12. Chacko P, Joseph T, Mathew BS, et al. (2005) Role of xenobiotic metabolizing gene polymorphisms in breast cancer susceptibility and treatment outcome. Mutat Res 581: 153-163.    

13. Kiruthiga PV, Kannan MR, Saraswathi C, et al. (2011) CYP1A1 gene polymorphisms: lack of association with breast cancer susceptibility in the southern region (Madurai) of India. Asian Pac J Cancer Prev 12: 2133-2138.

14. Masson LF, Sharp L, Cotton SC, et al. (2005) Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review. Am J Epidemiol 161: 901-915.    

15. Kawajiri K, Nakachi K, Imai K, et al. (1990) Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 263: 131-133.    

16. Hayashi SI, Watanabe J, Nakachi K, et al. (1991) PCR detection of an A/G polymorphism within exon 7 of the CYP1A1 gene. Nucleic Acids Res 19: 4797.

17. Cascorbi I, Brockmoller J, Roots I (1996) A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res 56: 4965-4969.

18. Li Y, Millikan RC, Bell DA, et al. (2005) Polychlorinated biphenyls, cytochrome P450 1A1 (CYP1A1) polymorphisms, and breast cancer risk among African American women and white women in North Carolina: a population-based case-control study. Breast Cancer Res 7: R12-18.

19. Crofts F, Taioli E, Trachman J, et al. (1994) Functional significance of different human CYP1A1 genotypes. Carcinogenesis 15: 2961-2963.    

20. Kiyohara C, Hirohata T, Inutsuka S (1996) The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene. Jpn J Cancer Res 87: 18-24.    

21. Li Y, Millikan RC, Bell DA, et al. (2004) Cigarette smoking, cytochrome P4501A1 polymorphisms, and breast cancer among African-American and white women. Breast Cancer Res 6: R460-473.    

22. Moher D, Liberati A, Tetzlaff J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151: 264-269, W264.    

23. Wells S PJ, Welch V. The newcastle-ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Health Research Institute, 2011. Available from: www.ohri.ca/programs/clinical_epidemiology/oxford/asp.

24. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719-748.

25. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177-188.    

26. Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127: 820-826.    

27. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539-1558.    

28. Higgins JP, Thompson SG, Deeks JJ, et al. (2003) Measuring inconsistency in meta-analyses. Bmj 327: 557-560.    

29. Gautham M, Shyamprasad KM, Singh R, et al. (2014) Informal rural healthcare providers in North and South India. Health Policy Plan 29 Suppl 1: i20-29.

30. Ravindran RD, Vashist P, Gupta SK, et al. (2011) Prevalence and risk factors for vitamin C deficiency in north and south India: a two centre population based study in people aged 60 years and over. PLoS One 6: e28588.    

31. Ioannidis JP, Trikalinos TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. Cmaj 176: 1091-1096.    

32. Gadgil MaG, R. (1992) The fissure land: An ecological history of India; Press OU, editor. New Delhi: Oxford University Press.

33. He XF, Wei W, Liu ZZ, et al. (2014) Association between the CYP1A1 T3801C polymorphism and risk of cancer: evidence from 268 case-control studies. Gene 534: 324-344.    

34. Wacholder S, Chanock S, Garcia-Closas M, et al. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96: 434-442.    

35. Thakkinstian A, McElduff P, D'Este C, et al. (2005) A method for meta-analysis of molecular association studies. Stat Med 24: 1291-1306.    

Copyright Info: © 2015, Hamdi Jarjanazi, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved