Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Drosophila models of cancer

1 Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew's place, East Melbourne, Melbourne, Victoria, 3002, Australia;
2 Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, 7 St Andrew's place, East Melbourne, Melbourne, Victoria, 3002, Australia;
3 Department of Anatomy and Neuroscience, University of Melbourne, 1-100 Grattan street, Parkville, Melbourne, Victoria, 3010, Australia;
4 Department of Biochemistry and Molecular Biology, University of Melbourne, 1-100 Grattan street, Parkville, Melbourne, Victoria, 3010, Australia

Special Issues: Drosophila models of tumourigenesis

  Figure/Table
  Supplementary
  Article Metrics

References

1. Fortini ME, Skupski MP, Boguski MS, et al. (2000) A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 150: F23-30.    

2. Cheng L, Parsons LM, Richardson HE (2013) Modelling cancer in Drosophila – The next generation. (version 2.0). Encyclopedia Life Sciences (eLS Wiley). DOI: 10.1002/9780470015902.a0020862.pub2

3. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6: 9-23.

4. Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13: 172-183.    

5. Rudrapatna VA, Cagan RL, Das TK (2012) Drosophila cancer models. Dev Dyn 241: 107-118.    

6. Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5: 626-639.    

7. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674.    

8. Bangi E (2013) Drosophila at the intersection of infection, inflammation, and cancer. Front Cell Infect Microbiol 3: 103.

9. Pastor-Pareja JC, Xu T (2013) Dissecting social cell biology and tumors using Drosophila genetics. Annu Rev Genet 47: 51-74.    

10. Stefanatos RK, Vidal M (2011) Tumor invasion and metastasis in Drosophila: a bold past, a bright future. J Genet Genomics 38: 431-438.    

11. Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229: 27-33.

12. Patel PH, Edgar BA (2014) Tissue design: how Drosophila tumors remodel their neighborhood. Semin Cell Dev Biol 28: 86-95.    

13. Trosko JE (2014) Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer? Anat Rec (Hoboken) 297: 161-173.    

14. Suh DH, Kim HS, Kim B, et al. (2014) Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: A therapeutic implication. Biochem Pharmacol 92: 43-54.    

15. Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12: 23-38.

16. Januschke J, Gonzalez C (2008) Drosophila asymmetric division, polarity and cancer. Oncogene 27: 6994-7002.    

17. Bell GP, Thompson BJ (2014) Colorectal cancer progression: lessons from Drosophila? Semin Cell Dev Biol 28: 70-77.    

18. Janssens DH, Lee CY (2014) It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Semin Cell Dev Biol 28: 63-69.    

19. Rosales-Nieves AE, Gonzalez-Reyes A (2014) Genetics and mechanisms of ovarian cancer: parallels between Drosophila and humans. Semin Cell Dev Biol 28: 104-109.    

20. Spradling A, Fuller MT, Braun RE, et al. (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3: a002642.

21. Sousa-Nunes R, Somers WG (2013) Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Adv Exp Med Biol 786: 79-102.    

22. Bausek N (2013) JAK-STAT signaling in stem cells and their niches in Drosophila. JAKSTAT 2: e25686.

23. Resende LP, Jones DL (2012) Local signaling within stem cell niches: insights from Drosophila. Curr Opin Cell Biol 24: 225-231.    

24. Papagiannouli F, Lohmann I (2012) Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 7: 723-736.    

25. Lee JEA, Parsons LM, Quinn LM (2014) MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS Genet 1: 81-98.    

26. Ma X (2014) Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS Genet 1: 20-33.    

27. Estella C, Baonza A (2015) Cell proliferation control by Notch signaling during imaginal discs development in Drosophila. AIMS Genet 2: 70-96.    

28. Froldi F, Szuperak M, Cheng LY (2015) Neural stem cell derived tumourigenesis. AIMS Genet 2: 13-24.    

29. La Marca JE, Somers WG (2014) The Drosophila gonads: models for stem cell proliferation, self-renewal and differentiation. AIMS Genet 1: 55-80.    

30. Murray MJ (2015) Drosophila models of metastasis. AIMS Genet 2: 25-53.    

31. Su TT (2015) Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genet 2: 54-69.    

32. Liu D, Shaukat Z, Hussain R, et al. (2015) Drosophila as a model for chromosomal instability. AIMS Genet 2: 1-12.    

33. Ntziachristos P, Lim JS, Sage J, et al. (2014) From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 25: 318-334.    

34. Dominguez M (2014) Oncogenic programmes and Notch activity: an 'organized crime'? Semin Cell Dev Biol 28: 78-85.    

35. Grusche FA, Degoutin JL, Richardson HE, et al. (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350: 255-266.    

36. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13: 246-257.    

37. Barron DA, Kagey JD (2014) The role of the Hippo pathway in human disease and tumorigenesis. Clin Transl Med 3: 25.    

38. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537-549.    

39. Grifoni D, Bellosta P (2014) Drosophila Myc: A master regulator of cellular performance. Biochim Biophys Acta S1874-9399: 00188-6.

40. Quinn LM, Secombe J, Hime GR (2013) Myc in stem cell behaviour: insights from Drosophila. Adv Exp Med Biol 786: 269-285.    

41. Johnston LA (2014) Socializing with MYC: cell competition in development and as a model for premalignant cancer. Cold Spring Harb Perspect Med 4: a014274.    

42. Amoyel M, Bach EA (2014) Cell competition: how to eliminate your neighbours. Development 141: 988-1000.    

43. Moreno E, Rhiner C (2014) Darwin's multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol 31C: 16-22.

44. Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4: a008797.

45. Portela M, Richardson HE (2013) Death takes a holiday-non-apoptotic role for caspases in cell migration and invasion. EMBO Rep 14: 107-108.    

46. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1: 46-54.    

47. Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22: 287-309.    

48. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147: 992-1009.    

49. Hogan C (2012) Impact of interactions between normal and transformed epithelial cells and the relevance to cancer. Cell Mol Life Sci 69: 203-213.    

50. Hugo H, Ackland ML, Blick T, et al. (2007) Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 213: 374-383.    

51. Elsum I, Yates L, Humbert PO, et al. (2012) The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 53: 141-168.    

52. Godde NJ, Galea RC, Elsum IA, et al. (2010) Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 15: 149-168.    

53. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13: 97-110.    

54. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481: 287-294.    

55. Lee H (2014) How Chromosome Mis-Segregation Leads to Cancer: Lessons from Mouse Models. Mol Cells 37: 713-718.    

56. Nam HJ, Naylor RM, van Deursen JM (2014) Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 25: 65-73.

57. Hirabayashi S, Baranski TJ, Cagan RL (2013) Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154: 664-675.    

58. Perez E, Das G, Bergmann A, et al. (2014) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene [Epub ahead of print].

59. Mulakkal NC, Nagy P, Takats S, et al. (2014) Autophagy in Drosophila: from historical studies to current knowledge. Biomed Res Int 2014: 273473.

60. Ohsawa S, Sato Y, Enomoto M, et al. (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signaling in Drosophila. Nature 490: 547-551.    

61. Levayer R, Moreno E (2013) Mechanisms of cell competition: themes and variations. J Cell Biol 200: 689-698.    

62. Willoughby LF, Schlosser T, Manning SA, et al. (2013) An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech 6: 521-529.    

63. Nagy P, Varga A, Kovacs AL, et al. (2014) How and why to study autophagy in Drosophila: It's more than just a garbage chute. Methods [Epub ahead of print].

64. Strohecker AM, White E (2014) Targeting mitochondrial metabolism by inhibiting autophagy in BRAF-driven cancers. Cancer Discov 4: 766-772.    

65. Das TK, Sangodkar J, Negre N, et al. (2013) Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 32: 3184-3197.    

66. Kadamb R, Mittal S, Bansal N, et al. (2013) Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 92: 237-246.    

67. Zhang C, Liu B, Li G, et al. (2011) Extra sex combs, chromatin, and cancer: exploring epigenetic regulation and tumorigenesis in Drosophila. J Genet Genomics 38: 453-460.    

68. Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 38: 497-504.    

69. Gladstone M, Frederick B, Zheng D, et al. (2012) A translation inhibitor identified in a Drosophila screen enhances the effect of ionizing radiation and taxol in mammalian models of cancer. Dis Model Mech 5: 342-350.    

70. Markstein M, Dettorre S, Cho J, et al. (2014) Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc Natl Acad Sci U S A 111: 4530-4535.    

71. Das TK, Cagan RL (2013) A Drosophila approach to thyroid cancer therapeutics. Drug Discov Today Technol 10: e65-71.    

72. Dar AC, Das TK, Shokat KM, et al. (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486: 80-84.    

73. Jaklevic B, Uyetake L, Lemstra W, et al. (2006) Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 174: 1963-1972.    

74. Edwards A, Gladstone M, Yoon P, et al. (2011) Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis Model Mech 4: 496-503.    

75. Gladstone M, Su TT (2011) Screening for radiation sensitizers of Drosophila checkpoint mutants. Methods Mol Biol 782: 105-117.    

76. Richardson HE, Willoughby L, Humbert PO (2015) Screening for anti-cancer drugs in Drosophila. Encyclopedia Life Sciences (eLS Wiley). DOI: 10.1002/9780470015902.a0022535

Copyright Info: © 2015, Helena E. Richardson, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved