Research article Special Issues

Diet of an underappreciated benthic intertidal fish, Cryptacanthodes maculatus (Cryptacanthodidae), in eastern Maine, USA

  • Received: 29 April 2016 Accepted: 05 August 2016 Published: 10 August 2016
  • We discovered through gut-content analysis over a 20-month period (June 2009–March 2011) that a little-known benthic fish, the wrymouth, Cryptacanthodes maculatus, preyed upon soft-bottom fauna from 8 phyla, 10 classes, and 28 genera in the lower intertidal/ shallow subtidal zone in Cobscook Bay (eastern Maine, USA). Wrymouth (N = 42; total length = 30–50 cm) live infaunally in extensive subterranean burrows, and consumed mainly polychaetes and amphipods that occurred in 80% and 75% of stomachs, respectively. The two most common polychaetes, Alitta virens and Harmothoe imbricata, were found in 60% and 25% of stomachs, respectively. Gammarideans Leptocheirus pinguis and Ampelisca abdita were the two most common amphipods occurring in 40% and 33% of stomachs, respectively. Benthic core samples taken from the mid- and low shore were ambiguous in helping to understand where wrymouth forage. Wrymouth likely contribute to trophic linkages between the intertidal and subtidal zones in soft-bottoms; however, its relative role in regulating benthic community structure, aspects of its reproductive behavior, and early life-history is unknown due in part to its cryptic lifestyle. In addition to identifying components of the wrymouth’s diet, we document gravid females for the first time, and when they appear in the population.

    Citation: Brian F. Beal, Summer D. Meredith, Cody B. Jourdet, Kyle E. Pepperman. Diet of an underappreciated benthic intertidal fish, Cryptacanthodes maculatus (Cryptacanthodidae), in eastern Maine, USA[J]. AIMS Environmental Science, 2016, 3(3): 488-508. doi: 10.3934/environsci.2016.3.488

    Related Papers:

  • We discovered through gut-content analysis over a 20-month period (June 2009–March 2011) that a little-known benthic fish, the wrymouth, Cryptacanthodes maculatus, preyed upon soft-bottom fauna from 8 phyla, 10 classes, and 28 genera in the lower intertidal/ shallow subtidal zone in Cobscook Bay (eastern Maine, USA). Wrymouth (N = 42; total length = 30–50 cm) live infaunally in extensive subterranean burrows, and consumed mainly polychaetes and amphipods that occurred in 80% and 75% of stomachs, respectively. The two most common polychaetes, Alitta virens and Harmothoe imbricata, were found in 60% and 25% of stomachs, respectively. Gammarideans Leptocheirus pinguis and Ampelisca abdita were the two most common amphipods occurring in 40% and 33% of stomachs, respectively. Benthic core samples taken from the mid- and low shore were ambiguous in helping to understand where wrymouth forage. Wrymouth likely contribute to trophic linkages between the intertidal and subtidal zones in soft-bottoms; however, its relative role in regulating benthic community structure, aspects of its reproductive behavior, and early life-history is unknown due in part to its cryptic lifestyle. In addition to identifying components of the wrymouth’s diet, we document gravid females for the first time, and when they appear in the population.


    加载中
    [1] Virnstein RW (1977) The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58: 1199-1217. doi: 10.2307/1935076
    [2] Quammen ML (1984) Predation by shorebirds, fish, and crabs on invertebrates in intertidal mudflats: an experimental test. Ecology 65: 529-537. doi: 10.2307/1941415
    [3] Norton SF, Cook AE (1999) Predation by fishes in the intertidal. . In: Horn MH, Martin KLM, Chotkowski MA Editors Intertidal Fishes: Life in two worlds. Academic Press, New York, 424-438.
    [4] Little C (2000) The Biology of Soft Shores and Estuaries. Oxford University Press, New York, 252.
    [5] Martinetto P, Iribane O, Palomo G (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. J Exp Mar Biol Ecol 318: 71-84. doi: 10.1016/j.jembe.2004.12.009
    [6] Coull BC, Wells JBJ (1983) Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal 64: 1599-1609.
    [7] Marinelli RL, Coull BC (1987) Structural complexity and juvenile fish predation on meiobenthos: an experimental approach. J Exp Mar Biol Ecol 108: 67-81. doi: 10.1016/0022-0981(87)90131-6
    [8] Johnson DS, Fleeger JW (2009) Weak response of saltmarsh infauna to ecosystem-wide nutrient enrichment and fish predator reduction: a four-year study. J Exp Mar Biol Ecol 373: 35-44. doi: 10.1016/j.jembe.2009.03.003
    [9] Allen EA, Fell PE, Peck MA, et al. (1994) Gut contents of common mummichogs, Fundulus heteroclitus L., in a restored impounded marsh and in natural reference marshes. Estuaries 17: 462-471.
    [10] Shahraki M, Saint-Paul U, Krumme U, et al. (2016) Fish use of intertidal mangrove creeks at Qeshm Island, Iran. Mar Ecol Prog Ser 542: 153-166. doi: 10.3354/meps11546
    [11] Thompson JS (2015) Size-selective foraging of adult mummichogs, Fundulus heteroclitus, in intertidal and subtidal habitats. Estuar Coast 38: 1535-1544. doi: 10.1007/s12237-014-9913-3
    [12] McCurdy DG, Forbes MR, Logan SP, et al. (2005) Foraging and impacts by benthic fish on the intertidal amphipod Corophium volutator. J Crustacean Biol 25: 558-564. doi: 10.1651/C-2539.1
    [13] Pasquaud S, Pillet M, David V, et al. (2010) Determination of fish trophic levels in an estuarine system. Estuar Coast Shelf S 86: 237-246.
    [14] Leclerc JC, Riera LML, Noel J, et al. (2014) Trophic ecology of Pomatoschistus microps within an intertidal bay (Roscoff, France), investigated through gut contents and stable isotope analyses. Mar Ecol 35: 261-270. doi: 10.1111/maec.12071
    [15] Griffin MPA, Valiela I (2001) δ15N isotope studies of life history and trophic position of Fundulus heteroclitus and Menidia menidia. Mar Ecol Prog Ser 214: 299-305. doi: 10.3354/meps214299
    [16] McMahon KW, Johnson BJ, Ambrose WG (2005) Diet and movement of the killifish, Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries 28: 966-973. doi: 10.1007/BF02696024
    [17] McCurdy DG, Forbes MR, Logan SR, et al. (2005) Foraging and impacts by benthic fish on the intertidal amphipod Corophium volutator. J Crust Biol 25: 558-564. doi: 10.1651/C-2539.1
    [18] Antonenko DV, Solomatov SF, Panchenko VV (2011) On occurrence and biology of Berg wrymouth Cryptacanthodes bergi (Cryptacanthodidae) in the north-western part of the Sea of Japan. J Ichthyol 51: 173-177. doi: 10.1134/S0032945211010012
    [19] Bigelow HB, Schroeder WG (1953) Fishes of the Gulf of Maine. Fish Bull 53: 1-557.
    [20] Radchenko OA, Chereshnev IA, Petrovskaya AV, et al. (2011) Relationships and position of wrymouths of the family Cryptacanthodidae in the system of the suborder Zoarcoidei (Pisces, Perciformes). J Ichthyol 51: 487-499. doi: 10.1134/S0032945211040163
    [21] Beal BF, Kraus MG (2002) Interactive effects of initial size, stocking density, and type of predator deterrent netting on survival and growth of cultured juveniles of the soft-shell clam, Mya arenaria L., in eastern Maine. Aquaculture 208: 81-111.
    [22] Collette BA, Klein-MacPhee G (2002) Bigelow and Schroeder’s Fishes of the Gulf of Maine. 3rd ed. Smithsonian Institution Press, Washington, DC., 748.
    [23] Willey A, Huntsman AG (1921) Faunal notes from the Atlantic Biological Station (1920). Can Field Nat 35: 1-7.
    [24] Scattergood LW (1948) Notes on some Gulf of Maine fishes. Copeia 2: 142-144.
    [25] Bowman RE, Stillwell CE, Michaels WL, et al. (2000) Food of Northwest Atlantic fishes and two common species of squid. NOAA Tech Memo NMFS-F/NE-155, 138.
    [26] Moring JR (1990) Seasonal absence of fishes in tidepools of a boreal environment (Maine, USA). Hydrobiologia 194: 163-168. doi: 10.1007/BF00028417
    [27] Chute AS, Turner JT (2001) Plankton studies in Buzzards Bay, Massachusetts, USA. V. Ichthyoplankton, 1987 to 1993. Mar Ecol Prog Ser 224: 45-54.
    [28] Herman SS (1963) Planktonic fish eggs and larvae of Narragansett Bay. Limnol Oceanogr 8: 103-109. doi: 10.4319/lo.1963.8.1.0103
    [29] Chenoweth SB (1973) Fish larvae of the estuaries and coast of central Maine. Fish Bull 71: 105-113.
    [30] Lazzari MA (2002) Epibenthic fishes and decapods crustaceans in northern estuaries: A comparison of vegetated and unvegetated habitats in Maine. Estuaries 25: 1210-1218. doi: 10.1007/BF02692218
    [31] Fisher JAD, Frank KT (2002) Changes in finfish community structure associated with an offshore fishery closed area on the Scotian Shelf. Mar Ecol Prog Ser 240: 249-265. doi: 10.3354/meps240249
    [32] Shackell NL, Frank KT (2003) Marine fish diversity on the Scotian Shelf, Canada. Aquat Conserv 13: 305-321. doi: 10.1002/aqc.554
    [33] Tyler AV (1971) Periodic and resident components in communities of Atlantic fishes. J Res Bd Can 28: 935-946. doi: 10.1139/f71-139
    [34] MacDonald JS, Dadswell MJ, Appy RG, et al. (1984) Fishes, fish assemblages, and their seasonal movements in the lower Bay of Fundy and Passamaquoddy Bay, Canada. Fish Bull 82: 121-139.
    [35] Bigelow HB, Schroeder WG (1939) Notes on the fauna above mud bottoms in deep water in the Gulf of Maine. Biol Bull 76: 305-324. doi: 10.2307/1537740
    [36] Moore JA, Hartel KE, Craddock JE, et al. (2003) An annotated list of deepwater fishes from off the New England region with new area records. Northeast Nat 10: 159-248.
    [37] Tallack SML (2007) Escape ring selectivity, bycatch, and discard survivability in the NewEngland fishery for deep-water red crab, Chaceon quinquedens. ICES J Mar Sci 64: 1579-1586. doi: 10.1093/icesjms/fsm107
    [38] Scattergood LW (1950) Observations of the food habits of the double-crested cormorant, Phalacrocorax a. auritus. Auk 67: 506-508.
    [39] Blackwell BF, Krohn WB, Allen RB (1995) Foods of nestling double-crested cormorants in Penobscot Bay, Maine, USA: temporal and spatial comparisons. Colon Waterbird 18: 199-208. doi: 10.2307/1521481
    [40] Ross KR (1977) A comparison of the feeding and nesting requirements of the great cormorant (Phalacrocorax carbo L.) and double-crested cormorant (Phalacrocorax auritus Lesson) in Nova Scotia. Proc N S Inst Sci 27: 114-132.
    [41] Renkawitz MD, Sheehan TF (2011) Feeding ecology of early marine phase Atlantic salmon Salmo salar post-smolts. J Fish Biol 79: 356-373.
    [42] Chase BC (2002) Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish Bull 100: 168-180.
    [43] Langton RW, Watling L (1990) The fish-benthos connection: a definition of prey groups in the Gulf of Maine. In: Barnes, M., Gibson R.N. Editors Trophic relationships in the marine environment. Proc 24th Eur Mar Biol Symp Aberdeen Univ Press, Scotland, 424-438.
    [44] Link JS, Garrison LP, Almeida FP (2002) Ecological interactions between elasmobranchs and groundfish species on the northeastern U.S. continental shelf. I. evaluating predation. N Am J Fish Manage 22: 550-562.
    [45] Hammill MO (2011) Feeding of grey seals in the Southern Gulf of St. Lawrence. DFO Can Sci Advis Sec Res Doc 2010/130, iv + 27 p.
    [46] Folk RL (1980) Petrology of sedimentary rocks. Hemphill Publishing Company. Austin, Texas.
    [47] Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.
    [48] Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth.
    [49] Warwick RM (1988) Analysis of community attributes of the macrobenthos of Frierfjord/Langesundfjord at taxonomic levels higher than species. Mar Ecol Prog Ser 46: 167-170. doi: 10.3354/meps046167
    [50] Winer BJ, Brown DR, Michels KM (1991) Statistical Principles in Experimental Design 3rd edn. McGraw-Hill, New York.
    [51] Ray GL (2000) Infaunal assemblages on constructed intertidal mudflats at Jonesport, Maine (USA). Mar Pollut Bull 40: 1186-1200. doi: 10.1016/S0025-326X(00)00083-7
    [52] Larsen PF (2012) The macroinvertebrate fauna of rockweed (Ascophyllum nodosum)–dominated low-energy rocky shores of the northern Gulf of Maine. J Coast Res 28: 36-42.
    [53] Lotze HK, Worm B, Sommer U (2001) Strong bottom-up and top-down control of early life stages of macroalgae. Limnol Oceanogr 46: 749-757. doi: 10.4319/lo.2001.46.4.0749
    [54] Cardell MJ (1990) Ecological characteristics of a population of Fabricia sabella (Ehrenberg) (Polychaeta Sabellidae) in the “trottoirs” of Lithophyllum tortuosum Fosile. Sci Mar 54: 305-310.
    [55] Henzler CM, Ingólfsson A (2007) The biogeography of the beachflea, Orchestia gammarellus (Crustacea, Amphipoda, Talitridae), in the North Atlantic with special reference to Iceland: a morphometric and genetic study. Zool Scr 37: 57-70.
    [56] Wildish DJ, Peer D (1983) Tidal current speed and production of benthic macrofauna in the lower Bay of Fundy. Can J Fish Aquat Sci 40 (Suppl 1): 309-321.
    [57] Olivier M, Desrosiers G, Retière C, et al. (1993) Variations spatio-temporelles de l’alimentation du polychaète Nereis virens (Sars) en zone intertidale (Estuaire maritime du St. Laurent, Québec). Vie Milieu 43: 1-12.
    [58] Plyuscheva M, Martin D, Britayev T (2010) Diet analyses of the scale-worms Lepidonotus squamatus and Harmothoe imbricata (Polychaeta, Polynoidae) in the White Sea. Mar Biol Res 6: 271-281. doi: 10.1080/17451000903334694
    [59] Cardinale M (2000) Ontogenetic shifts of bull-rout, Myoxocephalus scorpius (L.), in the south-western Baltic Sea. J Appl Ichthyol 16: 231-239.
    [60] Sieben K, Rippen AD, Eriksson BK (2011) Cascading effects from predator removal depend on resource availability in a benthic food web. Mar Biol 158: 391-400. doi: 10.1007/s00227-010-1567-5
    [61] Beal BF, Vencile KW (2001) Short-term effects of commercial clam (Mya arenaria L.) and worm (Glycera dibranchiata Ehlers) harvesting on survival and growth of juveniles of the soft-shell clam. J Shellfish Res 20: 1145-1157.
    [62] Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208: 229-248. doi: 10.3354/meps208229
    [63] Pavlov DA (2005) Reproductive biology of wolffishes (Anarhichadidae) and transition from oviparity to viviparity in the suborder Zoarcoidei. In: Uribe, M.C., Grier, H.J. Editors Viviparous Fishes, New Life Publications Homestead, Florida, 91-105.
    [64] Mank JE, Promislow DEL, Avise JC (2005) Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59: 1570-1578. doi: 10.1111/j.0014-3820.2005.tb01806.x
    [65] Lazzari MA (2001) Dynamics of larval fish abundance in Penobscot Bay, Maine. Fish Bull 99: 81-93.
    [66] Caron A, Desrosiers G, Olive PJW et al. (2004) Comparison of diet and feeding activity of two polychaetes, Nephtys caeca (Fabricius) and Nereis virens (Sars), in an estuarine intertidal environment in Quebec, Canada. J Exp Mar Biol Ecol 304: 225-242. doi: 10.1016/j.jembe.2003.12.014
    [67] Miron G, Desrosiers G, Retière C (1992) Activité de prospection de son aire d’alimentation par le polychète Nereis virens (Sars) en conditions constantes d’e´clairement et d’obscurité. C R Acad Sci Paris 314: 455-460.
    [68] Commito JA, Ambrose WG (1985) Multiple trophic levels in soft-bottom communities. Mar Ecol Prog Ser 26: 289-293. doi: 10.3354/meps026289
    [69] Ambrose WG (1991) Are infaunal predators important in structuring marine soft-bottom communities? Amer Zool 31: 849-860. doi: 10.1093/icb/31.6.849
    [70] Ambrose WG (1986) Estimate of removal rate of Nereis virens (Polychaeta: Nereidae) from an intertidal mudflat by gulls (Larus spp.). Mar Biol 90: 243-247. doi: 10.1007/BF00569134
    [71] Commito JA (1982) The importance of predation by infaunal polychaetes in controlling the structure of a soft-bottom community in Maine USA. Mar Biol 68: 77-81. doi: 10.1007/BF00393144
    [72] Robles C (1987) Predator foraging characteristics and prey population structure on a sheltered shore. Ecology 68: 1502-1514. doi: 10.2307/1939234
    [73] Rilov G, Schiel DR (2006) Trophic linkages across seascapes: subtidal predators limit effective mussel recruitment in rocky intertidal communities. Mar Ecol Prog Ser 327: 83-93. doi: 10.3354/meps327083
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5075) PDF downloads(1082) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog