Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro

1 Department of Applied Physics, Faculty of Physics, University of Athens, Building Physics 5, University Campus, 157 84 Athens, Greece
2 Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, 152 36 Athens, Greece

Special Issues: Environmental and health impacts of aerosols

A study of indoor environmental quality inside the old (naturally ventilated) and new (air-conditioned) train cabins and platforms of four main stations of the Athens subway system (Attiko Metro), took place in different two-day measurements from June to August 2012. Portable instrumentation provided continuous measurements of particulate matter (PM10, PM2.5 and PM1), carbon dioxide (CO2) along with temperature (T) and absolute humidity (AH). PM concentrations were significantly higher on the underground platforms of the network from 3 to 10 times, as compared to outdoor measurements. In particular, mean PM1, PM2.5 and PM10 concentrations at the deeper and most crowded station of Syntagma reached 18.7, 88.1 and 320.8 μg m−3 respectively. On the contrary, the ground level, open station of the Airport, showed values comparable to the outdoor (2, 6.4 and 34.4 μg m−3, respectively). All PM fractions were lower than the platforms inside the old and new train cabins while the air conditioned trains experienced lower particulate pollution levels. More specifically, mean PM1, PM2.5 and PM10 concentrations were 5.5, 16.8 and 58.3 μg m−3, respectively in new cabins while in the old they reached 10.3, 47.5 and 238.8 μg m−3. The PM2.5/PM10 and PM1/PM2.5 ratios did not exceed 0.33 on both platforms and trains verifying the dominance of crustal coarse particles originating from the train and ground materials. As expected CO2 levels were higher inside the trains as compared to the platforms and in some cases surpassed the 1000 ppm limit during the hottest days of the experimental campaign. Temperature and humidity remained relatively stable on the platforms, whereas measurements inside the cabins fluctuated, depending on the type of train and track locations. Correlations between measured PM along the routes to and from the Airport indicated covariance of concentrations along train cabins of the same direction.
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved