Research article Special Issues

Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties

  • Received: 10 February 2015 Accepted: 15 May 2015 Published: 08 June 2015
  • Pest control technology was introduced into the tropics without considering the specificity of their ecosystems and the risk of pollution was underestimated. Some volcanic soils (andosols) contain nanoclay (allophane) with a unique structure and porous properties compared to crystalline clays. Andosols are characterized by large pore volume and pore size distribution, a high specific surface area, and a fractal structure. These soils are more polluted than the other kinds of tropical soils but release less pollutants (chlordecone) to water and plants. The literature shows that the allophane microstructure favors accumulation and sequestration of chlordecone, an organochlorine pesticide, in andosols.
    We used a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster-cluster aggregation model. From the simulated data, we derived the structural features, pore volume and tortuosity, and its transport properties, hydraulic conductivity and diffusion. We show that transport properties decrease because of the presence of allophane. We propose that low hydraulic conductivity and diffusion are important parameters to explain the high concentrations and trapping of pollutants in andosols.

    Citation: Thierry Woignier, Florence Clostre, Philippe Cattan, Magalie Lesueur-Jannoyer. Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties[J]. AIMS Environmental Science, 2015, 2(3): 494-510. doi: 10.3934/environsci.2015.3.494

    Related Papers:

  • Pest control technology was introduced into the tropics without considering the specificity of their ecosystems and the risk of pollution was underestimated. Some volcanic soils (andosols) contain nanoclay (allophane) with a unique structure and porous properties compared to crystalline clays. Andosols are characterized by large pore volume and pore size distribution, a high specific surface area, and a fractal structure. These soils are more polluted than the other kinds of tropical soils but release less pollutants (chlordecone) to water and plants. The literature shows that the allophane microstructure favors accumulation and sequestration of chlordecone, an organochlorine pesticide, in andosols.
    We used a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster-cluster aggregation model. From the simulated data, we derived the structural features, pore volume and tortuosity, and its transport properties, hydraulic conductivity and diffusion. We show that transport properties decrease because of the presence of allophane. We propose that low hydraulic conductivity and diffusion are important parameters to explain the high concentrations and trapping of pollutants in andosols.


    加载中
    [1] Cabidoche YM, Achard R, Cattan P, et al. (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut 157: 1697-1705. doi: 10.1016/j.envpol.2008.12.015
    [2] Levillain J, Cattan P, Colin F, et al. (2012) Analysis of environmental and farming factors of soil contamination by a persistent organic pollutant, chlordecone, in a banana production area of French West Indies. Agr Ecosyst Environ 159: 123-132. doi: 10.1016/j.agee.2012.07.005
    [3] Clostre F, Lesueur-Jannoyer M, Achard R, et al. (2014) Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution. Environ Sci Pollut Res 21: 1980-1992. doi: 10.1007/s11356-013-2095-x
    [4] Cabidoche YM, Lesueur-Jannoyer M (2012) Contamination of Harvested Organs in Root Crops Grown on Chlordecone-Polluted Soils. Pedosphere 22: 562-571. doi: 10.1016/S1002-0160(12)60041-1
    [5] Clostre F, Letourmy P, Lesueur-Jannoyer M (2015) Organochlorine (chlordecone) uptake by root vegetables. Chemosphere 118: 96-102. doi: 10.1016/j.chemosphere.2014.06.076
    [6] Jondreville C, Lavigne A, Clostre F, et al. Contamination of grazing ducks by chlordecone in Martinique. Book of abstract; 2013; Nantes, France. Wageningen Academic Publishers. pp. 166-166.
    [7] Coat S, Monti D, Legendre P, et al. (2011) Organochlorine pollution in tropical rivers (Guadeloupe): role of ecological factors in food web bioaccumulation. Environ Pollut 159: 1692-1701. doi: 10.1016/j.envpol.2011.02.036
    [8] Gourcy L, Baran N, Vittecoq B (2009) Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique, French West Indies). J Contam Hydrol 108: 107-117. doi: 10.1016/j.jconhyd.2009.06.004
    [9] Multigner L, Ndong JR, Giusti A, et al. (2010) Chlordecone Exposure and Risk of Prostate Cancer. J Clin Oncol 28: 3457-3462. doi: 10.1200/JCO.2009.27.2153
    [10] Dallaire R, Muckle G, Rouget F, et al. (2012) Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res 118: 79-85. doi: 10.1016/j.envres.2012.07.006
    [11] Dubuisson C, Héraud F, Leblanc J-C, et al. (2007) Impact of subsistence production on the management options to reduce the food exposure of the Martinican population to Chlordecone. Regul Toxicol Pharm 49: 5-16. doi: 10.1016/j.yrtph.2007.04.008
    [12] Lesueur-Jannoyer M, Cattan P, Monti D, et al. (2012) Chlordécone aux Antilles : évolution des systèmes de culture et leur incidence sur la dispersion de la pollution. Agronomie Environnement & Sociétés 2: 45-58.
    [13] Cattan P, Ruy SM, Cabidoche YM, et al. (2009) Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate. J Hydrol 368: 251-261. doi: 10.1016/j.jhydrol.2009.02.020
    [14] Saison C, Cattan P, Louchart X, et al. (2008) Effect of Spatial Heterogeneities of Water Fluxes and Application Pattern on Cadusafos Fate on Banana-Cultivated Andosols. J Agr Food Chem 56: 11947-11955. doi: 10.1021/jf802435c
    [15] Charlier J-B, Cattan P, Voltz M, et al. (2009) Transport of a Nematicide in Surface and Groundwaters in a Tropical Volcanic Catchment All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. J Environ Qual 38: 1031-1041.
    [16] Clothier BE, Vogeler I, Magesan GN (2000) The breakdown of water repellency and solute transport through a hydrophobic soil. J Hydrol 231-232: 255-264. doi: 10.1016/S0022-1694(00)00199-2
    [17] Prado B, Duwig C, Etchevers J, et al. (2011) Nitrate fate in a Mexican Andosol: Is it affected by preferential flow? Agr Water Manage 98: 1441-1450. doi: 10.1016/j.agwat.2011.04.013
    [18] Accinelli C, Vicari A, Pisa PR, et al. (2002) Losses of atrazine, metolachlor, prosulfuron and triasulfuron in subsurface drain water. I. Field results. Agronomie 22: 399-411.
    [19] Schiavon M, Perrin-Ganier C, Portal J (1995) La pollution de l'eau par les produits phytosanitaires : état et origine. Agronomie 15: 157-170. doi: 10.1051/agro:19950301
    [20] Paton GI, Paterson CJ, Winton A, et al. (2004) Distribution, bioavailability and behavior of persistent organic pollutants in Andosols: with specific reference to Iceland. In: Arnalds HÓaÓ, editor. Volcanic Soil Resources in Europe. pp. 108-109.
    [21] Olvera-Velona A, Benoit P, Barriuso E, et al. (2008) Sorption and desorption of organophosphate pesticides, parathion and cadusafos, on tropical agricultural soils. Agron Sust Dev 28: 231-238. doi: 10.1051/agro:2008009
    [22] Prado B, Duwig C, Hidalgo C, et al. (2014) Transport, sorption and degradation of atrazine in two clay soils from Mexico: Andosol and Vertisol. Geoderma 232-234: 628-639. doi: 10.1016/j.geoderma.2014.06.011
    [23] Fernandez Bayo J, Saison C, Geniez C, et al. (2013) Sorption characteristics of chlordecone and cadusafos in tropical agricultural soils. Curr Org Chem 17: 2976-2984. doi: 10.2174/13852728113179990121
    [24] Brunet D, Woignier T, Lesueur-Jannoyer M, et al. (2009) Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS). Environ Pollut 157: 3120-3125. doi: 10.1016/j.envpol.2009.05.026
    [25] Desprat J-F, Comte J-P, Chabrier C (2004) Cartographie du risque de pollution des sols de Martinique par les organochlorés : Rapport phase 3 : Synthèse. 25 p.
    [26] Tillieut O, Cabidoche Y-M (2006) Cartographie de la pollution des sols de Guadeloupe par la chlordécone : Rapport technique. Abymes, France: DAAF-SA & INRA-ASTRO. 23 p.
    [27] Charlier J-B, Cattan P, Moussa R, et al. (2008) Hydrological behaviour and modelling of a volcanic tropical cultivated catchment. Hydrol Process 22: 4355-4370. doi: 10.1002/hyp.7040
    [28] Woignier T, Clostre F, Fernandes P, et al. (2015) Sequestering Pesticide with Organic Fertilizer or Organic Amendment. In: Shishir Sinha KKP, S. Bajpai, J.N. Govil, editor. Fertilizer Technology. USA: Studium Press LLC. pp. 319-344.
    [29] Clostre F, Letourmy P, Turpin B, et al. (2014) Soil Type and Growing Conditions Influence Uptake and Translocation of Organochlorine (Chlordecone) by Cucurbitaceae Species. Water Air Soil Pollut 225: 1-11.
    [30] Pignatello JJ (1998) Soil organic matter as a nanoporous sorbent of organic pollutants. Adv Colloid Interfac 76-77: 445-467. doi: 10.1016/S0001-8686(98)00055-4
    [31] Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112: 269-283. doi: 10.1016/S0269-7491(00)00099-3
    [32] Vlčková K, Hofman J (2012) A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. Environ Pollut 160: 49-56. doi: 10.1016/j.envpol.2011.08.049
    [33] Peters R, Kelsey JW, White JC (2007) Differences in p,p′-DDE bioaccumulation from compost and soil by the plants Cucurbita pepo and Cucurbita maxima and the earthworms Eisenia fetida and Lumbricus terrestris. Environ Pollut 148: 539-545. doi: 10.1016/j.envpol.2006.11.030
    [34] Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48: 109-115. doi: 10.1016/S0045-6535(02)00045-0
    [35] Liu C, Li H, Teppen BJ, et al. (2009) Mechanisms Associated with the High Adsorption of Dibenzo-p-dioxin from Water by Smectite Clays. Environ Sci Technol 43: 2777-2783. doi: 10.1021/es802381z
    [36] Rana K, Boyd SA, Teppen BJ, et al. (2009) Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite. Phys Chem Chem Phys 11: 2976-2985.
    [37] Duwig C, Müller K, Vogeler I (2006) 2,4-D Movement in Allophanic Soils from Two Contrasting Climatic Regions. Commun Soil Sci Plan 37: 2841-2855. doi: 10.1080/00103620600832795
    [38] Parfitt RL (1989) Phosphate reactions with natural allophane, ferrihydrite and goethite. Journal of Soil Science 40: 359-369. doi: 10.1111/j.1365-2389.1989.tb01280.x
    [39] Levard C, Doelsch E, Basile-Doelsch I, et al. (2012) Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma 183-184: 100-108. doi: 10.1016/j.geoderma.2012.03.015
    [40] Dœlsch E, Basile-Dœlsch I, Rose J, et al. (2006) New Combination of EXAFS Spectroscopy and Density Fractionation for the Speciation of Chromium within an Andosol. Environ Sci Technol 40: 7602-7608. doi: 10.1021/es060906q
    [41] Khan H, Matsue N, Henmi T (2006) Adsorption of Water on Nano-ball Allophane. Clay Sci 12: 261-266.
    [42] Reinert L, Ohashi F, Kehal M, et al. (2011) Characterization and boron adsorption of hydrothermally synthesised allophanes. Appl Clay Sci 54: 274-280. doi: 10.1016/j.clay.2011.10.002
    [43] Henmi T, Huang PM (1985) Removal of phosphorus by poorly ordered clays as influenced by heating and grinding. Appl Clay Sci 1: 133-144. doi: 10.1016/0169-1317(85)90569-1
    [44] Clark CJ, McBride MB (1984) Cation and anion retention by natural and synthetic allophane and imogolite. Clay Clay Miner 32: 291-299. doi: 10.1346/CCMN.1984.0320407
    [45] Arai Y, Sparks DL, Davis JA (2005) Arsenate Adsorption Mechanisms at the Allophane-Water Interface. Environ Sci Technol 39: 2537-2544. doi: 10.1021/es0486770
    [46] Opiso E, Sato T, Yoneda T (2009) Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials. J Hazard Mater 170: 79-86. doi: 10.1016/j.jhazmat.2009.05.001
    [47] Calabi-Floody M, Velásquez G, Gianfreda L, et al. (2012) Improving bioavailability of phosphorous from cattle dung by using phosphatase immobilized on natural clay and nanoclay. Chemosphere 89: 648 - 655. doi: 10.1016/j.chemosphere.2012.05.107
    [48] Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31: 697-710. doi: 10.1016/S0146-6380(00)00049-8
    [49] Arias-Estévez M, López-Periago E, Martínez-Carballo E, et al. (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agr Ecosyst Environ 123: 247-260. doi: 10.1016/j.agee.2007.07.011
    [50] Puglisi E, Cappa F, Fragoulis G, et al. (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67: 548-556. doi: 10.1016/j.chemosphere.2006.09.058
    [51] Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108: 103-112. doi: 10.1016/S0269-7491(99)00206-7
    [52] Wallace KB (1973) Structural behaviour of residual soils of the continually wet Highlands of Papua New Guinea. Geotechnique 23: 203-218. doi: 10.1680/geot.1973.23.2.203
    [53] Fieldes M (1966) The nature of allophane in soils., Part 1, Significance of structural randomness in pedogenesis. New Zeal J Sci 9: 599-607.
    [54] Wada K (1985) The distinctive properties of Andosol. Adv Soil Sci 2: 173-229. doi: 10.1007/978-1-4612-5088-3_4
    [55] Lindner GG, Nakazawa H, Hayashi S (1998) Hollow nanospheres, allophanes ‘All-organic’ synthesis and characterization. Micropor Mesopor Mat 21: 381-386. doi: 10.1016/S1387-1811(98)00002-X
    [56] Wells N, Theng BKG (1985) Factors affecting the flow behavior of soil allophane suspensions under low shear rates. J Colloid Interf Sci 104: 398-408. doi: 10.1016/0021-9797(85)90048-7
    [57] Calabi-Floody M, Bendall JS, Jara AA, et al. (2011) Nanoclays from an Andisol: Extraction, properties and carbon stabilization. Geoderma 161: 159-167. doi: 10.1016/j.geoderma.2010.12.013
    [58] Garrido-Ramirez EG, Sivaiah MV, Barrault J, et al. (2012) Catalytic wet peroxide oxidation of phenol over iron or copper oxide-supported allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio. Micropor Mesopor Mat 162: 189-198. doi: 10.1016/j.micromeso.2012.06.038
    [59] Woignier T, Pochet G, Doumenc H, et al. (2007) Allophane: a natural gel in volcanic soils with interesting environmental properties. J Sol-Gel Sci Techn 41: 25-30. doi: 10.1007/s10971-006-0120-y
    [60] Adachi Y, Karube J (1999) Application of a scaling law to the analysis of allophane aggregates. Colloid Surface A 151: 43-47. doi: 10.1016/S0927-7757(98)00581-0
    [61] Chevallier T, Woignier T, Toucet J, et al. (2008) Fractal structure in natural gels: effect on carbon sequestration in volcanic soils. J Sol-Gel Sci Techn 48: 231-238. doi: 10.1007/s10971-008-1795-z
    [62] Chevallier T, Woignier T, Toucet J, et al. (2010) Organic carbon stabilization in the fractal pore structure of Andosols. Geoderma 159: 182-188. doi: 10.1016/j.geoderma.2010.07.010
    [63] Ghanbarian-Alavijeh B, Millán H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91: 1-14. doi: 10.4141/cjss10008
    [64] Bird NRA, Bartoli F, Dexter AR (1996) Water retention models for fractal soil structures. Eur J Soil Sci 47: 1-6. doi: 10.1111/j.1365-2389.1996.tb01365.x
    [65] Woignier T, Primera J, Hashmy A (2006) Application of the DLCA model to natural gels : the allophanic soils. J Sol-Gel Sci Techn 40: 201-207. doi: 10.1007/s10971-006-7593-6
    [66] Primera J, Woignier T, Hasmy A (2005) Pore Structure Simulation of Gels with a Binary Monomer Size Distribution. J Sol-Gel Sci Techn 34: 273-280. doi: 10.1007/s10971-005-2524-5
    [67] Meakin P (1983) Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys Rev Lett 51: 1119-1122. doi: 10.1103/PhysRevLett.51.1119
    [68] Kolb M, Botet R, Jullien R (1983) Scaling of Kinetically Growing Clusters. Physical Review Letters 51: 1123-1126. doi: 10.1103/PhysRevLett.51.1123
    [69] Jullien R, Botet R (1987) Aggregation and Fractal Aggregates: World Scientific.
    [70] Evans JW (1993) Random and cooperative sequential adsorption. Rev Mod Phys 65: 1281-1329. doi: 10.1103/RevModPhys.65.1281
    [71] Primera J, Hasmy A, Woignier T (2003) Numerical Study of Pore Sizes Distribution in Gels. J Sol-Gel Sci Techn 26: 671-675. doi: 10.1023/A:1020765230983
    [72] Bielders CL, De Backer LW, Delvaux B (1990) Particle Density of Volcanic Soils as Measured with a Gas Pycnometer. Soil Sci Soc Am J 54: 822-826. doi: 10.2136/sssaj1990.03615995005400030034x
    [73] Woignier T, Braudeau E, Doumenc H, et al. (2005) Supercritical Drying Applied to Natural “Gels”: Allophanic Soils. J Sol-Gel Sci Techn 36: 61-68. doi: 10.1007/s10971-005-2659-4
    [74] Carman PC (1937) Fluid flow through granular beds. Transactions-IChemE 15: 150-166.
    [75] Woignier T, Primera J, M. L, et al. (2005) The use of silica aerogels as host matrices for chemical species. Different ways to control the permeability and the mechanical properties. J Non-Cryst Solids 350: 298-306.
    [76] Dullien FAL, Brenner H (1979) Porous Media: Fluid Transport and Pore Structure: Academic press. 396 p.
    [77] Wyllie MRJ, Spangler MB (1952) Application of Electrical Resistivity Measurements to Problem of Fluid Flow in Porous Media. AAPG Bull 36: 359-403.
    [78] Stanley HE, Family F, Gould H (1985) Kinetics of aggregation and gelation. J Polym Sci Polym Symp 73: 19-37.
    [79] Courtens E, Pelous J, Phalippou J, et al. (1987) Brillouin-scattering measurements of phonon-fracton crossover in silica aerogels. Phys Rev Lett 58: 128-131. doi: 10.1103/PhysRevLett.58.128
    [80] Vacher R, Courtens E, Coddens G, et al. (1990) Crossovers in the density of states of fractal silica aerogels. Phys Rev Lett 65: 1008-1011. doi: 10.1103/PhysRevLett.65.1008
    [81] Herrmann HJ, Stanley HE (1988) The fractal dimension of the minimum path in two- and three-dimensional percolation. J Phys A-Math Gen 21: L829. doi: 10.1088/0305-4470/21/17/003
    [82] Meakin P, Majid I, Havlin S, et al. (1984) Topological properties of diffusion limited aggregation and cluster-cluster aggregation. J Phys A-Math Gen 17: L975. doi: 10.1088/0305-4470/17/18/008
    [83] Ramanujan S, Pluen A, McKee TD, et al. (2002) Diffusion and Convection in Collagen Gels: Implications for Transport in the Tumor Interstitium. Biophys J 83: 1650-1660. doi: 10.1016/S0006-3495(02)73933-7
    [84] Anez L, Calas-Etienne S, Primera J, et al. (2014) Gas and liquid permeability in nano composites gels: Comparison of Knudsen and Klinkenberg correction factors. Micropor Mesopor Mat 200: 79-85. doi: 10.1016/j.micromeso.2014.07.049
    [85] Fosmoe A, Hench LL (1992) Gas permeability in porous gel-silica. In: L.L. Hench JKW, editor. Chemical Processing of Advanced Materials. New York: John Wiley and Sons Inc. pp. 897-905.
    [86] Gross J, Scherer G (1998) Structural Efficiency and Microstructural Modeling of Wet Gels and Aerogels. J Sol-Gel Sci Techn 13: 957-960. doi: 10.1023/A:1008643828073
    [87] Reichenauer G, Stumpf C, Fricke J (1995) Characterization of SiO2, RF and carbon aerogels by dynamic gas expansion. J Non-Cryst Solids 186: 334-341. doi: 10.1016/0022-3093(95)00057-7
    [88] Dorel M, Roger-Estrade J, Manichon H, et al. (2000) Porosity and soil water properties of Caribbean volcanic ash soils. Soil Use Manage 16: 133-140.
    [89] Fernandez-Bayo JD, Saison C, Voltz M, et al (2013). Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions. Sci Total Environ 463-464: 395-403.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6008) PDF downloads(1164) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog