Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using Computational Fluid Dynamics modelling

Centre of Green Technology, University of Technology Sydney, NSW 2007, Australia

Topical Section: Wind Energy

Renewable energy technologies are receiving much attention to replacing power plants operated by fossil and nuclear fuels. Of all the renewable technologies, wind power has been successfully implemented in several countries. There are several parameters in the aerodynamic characteristics and design of the horizontal wind turbine. This paper highlights the key sensitive parameters that affect the aerodynamic performance of the horizontal wind turbine, such as environmental conditions, blade shape, airfoil configuration and tip speed ratio. Different turbulence models applied to predict the flow around the horizontal wind turbine using Computational Fluid Dynamics modeling are reviewed. Finally, the challenges and concluding remarks for future research directions in wind turbine design are discussed.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Conti J, Holtberg P, Diefenderfer J, et al. (2016) International energy outlook 2016 with projections to 2040. USDOE Energy Information Administration (EIA), Washington, DC (United States), 2016.

2. Sims RE, Rogner HH, Gregory K (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 31: 1315-1326.    

3. W. W. E. A. (February 25, 2019) Wind Power Capacity Worldwide Reaches 597 GW, 50,1 GW added in 2018.

4. Kaviani H, Nejat A (2017) Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm. Energy 140: 1198-1215.    

5. Ashrafi ZN, Ghaderi M, Sedaghat A (2015) Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control. Energy Convers Manage 93: 349-356.    

6. Lydia M, Kumar SS, Selvakumar AI, et al. (2014) A comprehensive review on wind turbine power curve modeling techniques. Renewable Sustainable Energy Rev 30: 452-460.    

7. Tchakoua P, Wamkeue R, Ouhrouche M, et al. (2014) Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies 7: 2595-2630.    

8. Sanderse B, van der Pijl SP, Koren B (2011). Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy 14: 799-819.    

9. Infield D, Freris L (2020). Renewable energy in power systems, John Wiley & Sons.

10. Bai CJ, Chen PW, Wang WC (2016) Aerodynamic design and analysis of a 10 kW horizontal-axis wind turbine for Tainan, Taiwan. Clean Technol Environ Policy 18: 1151-1166.    

11. Manwell JF, McGowan JG, Rogers AL (2010) Wind energy explained: theory, design and application, John Wiley & Sons.

12. Katsigiannis YA, Stavrakakis GS (2014). Estimation of wind energy production in various sites in Australia for different wind turbine classes: A comparative technical and economic assessment. Renewable Energy 67: 230-236.    

13. Masters GM (2013) Renewable and efficient electric power systems, John Wiley & Sons.

14. Rocha PAC, de Sousa RC, de Andrade CF, et al. (2012) Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Appl Energy 89: 395-400.    

15. Seguro J, Lambert T (2000) Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J Wind Eng Ind Aerodyn 85: 75-84.    

16. Laban ON, Maghanga CM, Joash K (2019) Determination of the surface roughness parameter and wind shear exponent of Kisii Region from the On-Site measurement of wind profiles. J Energy 2019.

17. Wang L, Cholette ME, Tan AC, et al. (2017) A computationally-efficient layout optimization method for real wind farms considering altitude variations. Energy 132: 147-159.    

18. Islam M, Saidur R, Rahim N (2011) Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy 36: 985-992.    

19. Krenn A, Winkelmeier H, Cattin R, et al. (2010) Austrian wind atlas and wind potential analysis. DEWEK, Available from: www. windatlas. at/downloads/20101117_Paper_Dewek. pdf.

20. Celik AN (2004) A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable Energy 29: 593-604.    

21. Mentis D, Hermann S, Howells M, et al. (2015) Assessing the technical wind energy potential in Africa a GIS-based approach. Renewable Energy 83: 110-125.    

22. Ma PC, Zhang Y (2014) Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials. Renewable Sustainable Energy Rev 30: 651-660.    

23. Perez-Blanco H (2011) Optimization of wind energy capture using BET. Proc., ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers Digital Collection, 879-887.

24. Duquette MM, Visser KD (2003) Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines. J Sol Energy Eng 125: 425-432.    

25. McKenna R, vd Leye PO, Fichtner W (2016) Key challenges and prospects for large wind turbines. Renewable Sustainable Energy Rev 53: 1212-1221.    

26. Letcher TM (2017) Wind energy engineering: A handbook for onshore and offshore wind turbines, Academic Press.

27. Heier S (2014) Grid integration of wind energy: Onshore and offshore conversion systems, John Wiley & Sons.

28. Boldea I, Tutelea LN (2009) Electric machines: steady state, transients, and design with MATLAB, CRC press.

29. Orabi M, El-Sousy F, Godah H, et al. (2004) High-performance induction generator-wind turbine connected to utility grid. Proc., INTELEC 2004. 26th Annual International Telecommunications Energy Conference, IEEE, 697-704.

30. Mishnaevsky Jr L, Favorsky O (2011) Composite materials in wind energy technology. Thermal to Mechanical Energy Conversion: Engines and Requirements, EOLSS Publishers: Oxford, UK.

31. Ashwill T Materials and innovations for large blade structures: research opportunities in wind energy technology. Proc., 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, 2407.

32. Thresher RW, Dodge DM (1998) Trends in the evolution of wind turbine generator configurations and systems. Wind Energy: Int J Prog Appl Wind Power Convers Technol 1: 70-86.

33. Sieros G, Chaviaropoulos P, Sørensen JD, et al. (2012) Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy. Wind Energy 15: 3-17.    

34. Al-Abadi A, Ertunç Ö, Beyer F, et al. Torque-matched aerodynamic shape optimization of HAWT rotor. Proc, J Physics: Conference Series, IOP Publishing, 012003.

35. Al-Abadi A, Ertunç Ö, Weber H, et al. (2015) A design and optimization method for matching the torque of the wind turbines. J Renewable Sustainable Energy 7: 023129.    

36. Chattot JJ (2003) Optimization of wind turbines using helicoidal vortex model. J Sol Energy Eng 125: 418-424.    

37. Jureczko M, Pawlak M, Mężyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167: 463-471.    

38. Henriques J, Da Silva FM, Estanqueiro, et al. (2009) Design of a new urban wind turbine airfoil using a pressure-load inverse method. Renewable Energy 34: 2728-2734.    

39. Vardar A, Alibas I (2008) Research on wind turbine rotor models using NACA profiles. Renewable Energy 33: 1721-1732.    

40. Ameku K, Nagai BM, Roy JN (2008). Design of a 3 kW wind turbine generator with thin airfoil blades. Exp Therm Fluid Sci 32: 1723-1730.    

41. Leung D, Deng Y, Leung M (2010) Design optimization of a cost-effective micro wind turbine. Proc, WCE 2010-World Congress on Engineering 2010, International Association of Engineers.

42. Hirahara H, Hossain MZ, Kawahashi M, et al. (2005) Testing basic performance of a very small wind turbine designed for multi-purposes. Renewable Energy 30: 1279-1297.    

43. Liu X, Wang L, Tang X (2013) Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renewable Energy 57: 111-119.    

44. Sedaghat A, Mirhosseini M (2012) Aerodynamic design of a 300 kW horizontal axis wind turbine for province of Semnan. Energy Convers Manage 63: 87-94.    

45. Darwish AS, Shaaban S, Marsillac E, et al. (2019) A methodology for improving wind energy production in low wind speed regions, with a case study application in Iraq. Comput Ind Eng 127: 89-102.    

46. Derakhshan S, Tavaziani A, Kasaeian N (2015) Numerical shape optimization of a wind turbine blades using artificial bee colony algorithm. J Energy Resour Technol 137: 051210.    

47. Alpman E (2014) Effect of selection of design parameters on the optimization of a horizontal axis wind turbine via genetic algorithm. Institute of Physics Publishing.

48. Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30: 2101-2114.    

49. Seo S, Oh SD, Kwak HY (2019) Wind turbine power curve modeling using maximum likelihood estimation method. Renewable Energy 136: 1164-1169.    

50. Kishore RA, Priya S (2013) Design and experimental verification of a high efficiency small wind energy portable turbine (SWEPT). J Wind Eng Ind Aerodyn 118: 12-19.    

51. Singh RK, Ahmed MR, Zullah MA, et al. (2012) Design of a low Reynolds number airfoil for small horizontal axis wind turbines. Renewable Energy 42: 66-76.    

52. Gasch R, Twele J (2011) Wind power plants: fundamentals, design, construction and operation, Springer Science & Business Media.

53. Scholbrock A, Fleming P, Fingersh L, et al., Field testing LIDAR-based feed-forward controls on the NREL controls advanced research turbine. Proc., 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 818.

54. Oerlemans S, Sijtsma P, Méndez López B (2007) Location and quantification of noise sources on a wind turbine. J Sound Vib 299: 869-883.    

55. Deshmukh AP, Allison JT (2016) Multidisciplinary dynamic optimization of horizontal axis wind turbine design. Struct Multidiscip Optim 53: 15-27.    

56. Tong W (2010) Wind power generation and wind turbine design, WIT press.

57. Sedaghat A, Mirhosseini M (2012) Aerodynamic design of a 300 kW horizontal axis wind turbine for province of Semnan. Energy Convers Manage 63: 87-94.    

58. Hau E, von Renouard H (2003) Wind turbines: fundamentals, technologies, application, economics, Springer.

59. Devinant P, Laverne T, Hureau J (2002) Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J Wind Eng Ind Aerodyn 90: 689-707.    

60. Bertagnolio F, Sørensen NN, Johansen J, et al. (2001) Wind turbine airfoil catalogue.

61. Fupeng H, Yuhong L, Zuoyi C (2001) Suggestions for improving wind turbines blade characteristics. Wind Eng 25: 105-113.    

62. Lawson MJ, Li Y, Sale DC (2011) Development and verification of a computational fluid dynamics model of a horizontal-axis tidal current turbine. Proc, ASME 2011 30th international conference on ocean, offshore and arctic engineering, American Society of Mechanical Engineers Digital Collection, 711-720.

63. Yılmaz M, Köten H, Çetinkaya E, et al. (2018) A comparative CFD analysis of NACA0012 and NACA4412 airfoils. J Energy Syst 2: 145-159.

64. Fuglsang P, Madsen HA (1999) Optimization method for wind turbine rotors. J Wind Eng Ind Aerodyn 80: 191-206.    

65. Fuglsang P, Bak C (2004) Development of the Risø wind turbine airfoils. Wind Energy: Int J Prog Appl Wind Power Convers Technol 7: 145-162.

66. Dahl KS, Fuglsang P (1998) Design of the wind turbine airfoil family RISØ-A-XX.

67. Timmer W, Rooij R, Summary of the Delft University wind turbine dedicated airfoils. Proc, 41st aerospace sciences meeting and exhibit, 352.

68. Tangler JL, Somers DM (1995) NREL airfoil families for HAWTs. National Renewable Energy Lab., Golden, CO (United States).

69. Somers DM (2005) S833, S834, and S835 Airfoils: November 2001--November 2002. National Renewable Energy Lab.(NREL), Golden, CO (United States).

70. Sagol E, Reggio M, Ilinca A (2013) Issues concerning roughness on wind turbine blades. Renewable Sustainable Energy Rev 23: 514-525.    

71. Somers DM, Tangler JL (1995) Wind-tunnel test of the S814 thick root airfoil. National Renewable Energy Lab., Golden, CO (United States).

72. Van Rooij R, Timmer W (2003) Roughness sensitivity considerations for thick rotor blade airfoils. J Sol Energy Eng 125: 468-478.    

73. Lanzafame R, Messina M (2009) Design and performance of a double-pitch wind turbine with non-twisted blades. Renewable Energy 34: 1413-1420.    

74. Laursen J, Enevoldsen P, Hjort S, 3D CFD rotor computations of a multi-megawatt HAWT rotor. Proc., Proceedings of the European Wind Energy Conference, Milan, Italy.

75. Jeong JH, Kim SH (2018) CFD investigation on the flatback airfoil effect of 10 MW wind turbine blade. J Mech Sci Technol 32: 2089-2097.    

76. Ahmed MR, Narayan S, Zullah MA, et al. (2011) Experimental and numerical studies on a low Reynolds number airfoil for wind turbine blades. J Fluid Sci Technol 6: 357-371.    

77. Sayed MA, Kandil HA, Shaltot A (2012) Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method. Energy Convers Manage 64: 541-550.    

78. Sicot C, Devinant P, Laverne T, et al. (2006) Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics. Wind Energy 9: 361-370.    

79. Delnero J, Marañon di Leo J, Bacchi F, et al. (2005) Experimental determination of the influence of turbulent scale on the lift and drag coefficients of low Reynolds number airfoils. Lat Am Appl Res 35: 183-188.

80. Swalwell KE, Sheridan J, Melbourne W, The effect of turbulence intensity on stall of the NACA 0021 aerofoil. Proc, 14th Australasian Fluid Mechanics Conference, 10-14.

81. Larsen JW, Nielsen SR, Krenk S (2007) Dynamic stall model for wind turbine airfoils. J Fluids Struct 23: 959-982.    

82. Hoffmann JA (1991) Effects of freestream turbulence on the performance characteristics of an airfoil. AIAA J 29: 1353-1354.    

83. Kamada Y, Maeda T, Murata J, et al. (2011) Effects of turbulence intensity on dynamic characteristics of wind turbine airfoil. J Fluid Sci Technol 6: 333-341.    

84. Eke G, Onyewudiala J (2010) Optimization of wind turbine blades using genetic algorithm. Global J Res Eng 10.

85. Berg D, Zayas J, Aerodynamic and aeroacoustic properties of flatback airfoils. Proc, 46th AIAA Aerospace Sciences Meeting and Exhibit, 1455.

86. McWilliam M, Crawford C, Manufacturing defect effects on Bend-Twist coupled wind turbine blades. Proc, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 1062.

87. Lee SG, Park SJ, Lee KS, et al. (2012) Performance prediction of NREL (National Renewable Energy Laboratory) Phase VI blade adopting blunt trailing edge airfoil. Energy 47: 47-61.    

88. Kim SH, Bang HJ, Shin HK, et al. (2014) Composite structural analysis of flat-back shaped blade for multi-MW class wind turbine. Appl Compos Mater 21: 525-539.    

89. Fischer GR, Kipouros T, Savill AM (2014) Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables. Renewable Energy 62: 506-515.    

90. Lago LI, Ponta FL, Otero AD (2013) Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade. Renewable Energy 59: 13-22.    

91. Kahn DL, van Dam C, Berg DE (2008) Trailing edge modifications for flatback airfoils. Sandia National Laboratories.

92. Baker JP, Van Dam C (2009) Drag reduction of a blunt trailing-edge airfoil, University of California, Davis.

93. Cooperman A, McLennan A, Baker J, et al., Aerodynamic performance of thick blunt trailing edge airfoils. Proc, 28th AIAA Applied Aerodynamics Conference, 4228.

94. Chow R, Van Dam C (2013) Computational investigations of blunt trailing‐edge and twist modifications to the inboard region of the NREL 5 MW rotor. Wind Energy 16: 445-458.    

95. Schreck S, Fingersh L, Siegel K, et al., Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross Sections. Proc, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 915.

96. Murcia JP, Pinilla Á (2011) CFD analysis of blunt trailing edge airfoils obtained with several modification methods. Revista de Ingeniería, 14-24.

97. Standish K, Van Dam C (2003) Aerodynamic analysis of blunt trailing edge airfoils. J Sol Energy Eng 125: 479-487.    

98. Law S, Gregorek G (1987) Wind tunnel evaluation of a truncated NACA 64-621 airfoil for wind turbine applications.

99. Homsrivaranon K (2016) Investigation of Active Flow Control on an Extremely Thick Wind Turbine Airfoil. University of Kansas.

100. Zhang Tt, Huang W, Wang ZG, et al. (2016) A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method. J Zhejiang University-SCIENCE A 17: 632-645.    

101. Baker J, Mayda E, Van Dam C (2006) Experimental analysis of thick blunt trailing-edge wind turbine airfoils. J sol Energy Eng 128: 422-431.    

102. Göçmen T, Özerdem B (2012) Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale wind turbines. Energy 46: 62-71.    

103. Kim T, Jeon M, Lee S, et al. (2014) Numerical simulation of flatback airfoil aerodynamic noise. Renewable Energy 65: 192-201.    

104. Velte CM, Hansen MOL, Meyer KE, at al., Evaluation of the performance of vortex generators on the DU 91-W2-250 profile using stereoscopic PIV. Proc, International Symposium on Energy, Informatics and Cybernetics: Focus Symposium in the 12th World Multiconference on Systemics, Cybernetics and Informatics (WMSCI 2008).

105. Chamorro LP, Arndt R, Sotiropoulos F (2013) Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies. Renewable Energy 50: 1095-1105.    

106. Ceyhan O, Timmer W, Experimental evaluation of a non-conventional flat back thick airfoil concept for large offshore wind turbines. Proc, 2018 Applied Aerodynamics Conference, 3827.

107. Kim T, Lee S (2014) Aeroacoustic simulations of a blunt trailing-edge wind turbine airfoil. J Mech Sci Technol 28: 1241-1249.    

108. Fuglsang P, Sangill O, Hansen P (2002) Design of a 21 m blade with risø-a1 airfoils for active stall controlled wind turbines.

109. Johansen J, Madsen HA, Gaunaa M, at al. (2009) Design of a wind turbine rotor for maximum aerodynamic efficiency. Wind Energy: Int J Prog Appl Wind Power Convers Technol 12: 261-273.

110. Pinto RN, Afzal A, D'Souza LV, et al. (2017) Computational fluid dynamics in turbomachinery: A review of state of the art. Arch Comput Methods Eng 24: 467-479.    

111. Mikkelsen R, Sørensen JN, Øye S, et al., Analysis of power enhancement for a row of wind turbines using the actuator line technique. Proc, J Physics: Conference Series, IOP Publishing, 012044.

112. Snel H (2003) Review of aerodynamics for wind turbines. Wind Energy: Int J Prog Appl Wind Power Convers Technol 6: 203-211.

113. Zhou P (2017) CFD Simulation of the Wind Turbine Wake Under Different Atmospheric Boundary Conditions. Purdue University.

114. Schmidt S, McIver D, Blackburn HM, et al., Spectral element based simulation of turbulent pipe flow. Proc, 14th A/Asian Fluid Mech. Conf.

115. Sargsyan A (2010) Simulation and modeling of flow field around a horizontal axis wind turbine (HAWT) using RANS method, Florida Atlantic University.

116. Launder BE, Sharma B (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transfer 1: 131-137.

117. Shih TH, Liou WW, Shabbir A, et al. (1994) A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation.

118. Yakhot V, Orszag S, Thangam S, et al. (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A: Fluid Dyn 4: 1510-1520.    

119. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1: 3-51.

120. Mohamed M (2012) Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47: 522-530.    

121. Mielke A, Naumann J (2018) On the existence of global-in-time weak solutions and scaling laws for Kolmogorov's two-equation model of turbulence. arXiv preprint arXiv:1801.02039.

122. Wilcox DC (2008) Formulation of the kw turbulence model revisited. AIAA J 46: 2823-2838.    

123. Menter FR (2009) Review of the shear-stress transport turbulence model experience from an industrial perspective. Int J Comput Fluid Dyn 23: 305-316.    

124. Smirnov PE, Menter FR (2009) Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. J Turbomachinery 131.

125. Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47: 2894-2906.    

126. Spalart P, Allmaras SA, One-equation turbulence model for aerodynamic flows. Proc, 30th Aerospace Sciences Meeting And Exhibit, 439.

127. Bouhelal A, Smaïli A, Masson C, et al., Effects of surface roughness on aerodynamic performance of horizontal axis wind turbines. Proc, The 25th Annual Conference of the Computational Fluid Dynamics Society of Canada, CFD2017-337, University of Windsor, 18-21.

128. Gatski TB, Rumsey CL, Manceau R (2007) Current trends in modelling research for turbulent aerodynamic flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365: 2389-2418.    

129. Spalart P, Shur M (1997) On the sensitization of turbulence models to rotation and curvature. Aerosp Sci Technol 1: 297-302.    

130. Rahman M, Siikonen T, Agarwal R (2011) Improved low-Reynolds-number one-equation turbulence model. AIAA J 49: 735-747.    

131. Deardorff JW (1970) Numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41: 453-480.    

132. Touil H, Hussaini M, Gotoh T, et al. (2007) Development of stochastic models for turbulence. New J Phys 9: 215.    

133. Kraichnan RH (1976) Eddy viscosity in two and three dimensions. J Atmos Sci 33: 1521-1536.    

134. Chasnov JR (1991) Simulation of the Kolmogorov inertial subrange using an improved subgrid model. Phys Fluids A: Fluid Dyn 3: 188-200.    

135. Piomelli U (1993) High Reynolds number calculations using the dynamic subgrid‐scale stress model. Phys Fluids A: Fluid Dyn 5: 1484-1490.    

136. Fröhlich J, Mellen CP, Rodi W, et al. (2005) Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J Fluid Mech 526: 19-66.    

137. Spalart PR, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Proc, Proceedings of first AFOSR international conference on DNS/LES, Greyden Press.

138. Spalart PR (2009) Detached-eddy simulation. Annu Rev Fluid Mech 41: 181-202.    

139. Verhoeven O (2011) Trailing Edge Noise Simulations: Using IDDES in OpenFOAM.

140. Travin A, Shur M, Strelets M, et al. (2000) Detached-eddy simulations past a circular cylinder. Flow, Turbul Combust 63: 293-313.    

141. Sørensen JN (2011) Aerodynamic aspects of wind energy conversion. Annu Rev Fluid Mech 43: 427-448.    

142. Li Y, Paik KJ, Xing T, et al. (2012) Dynamic overset CFD simulations of wind turbine aerodynamics. Renewable Energy 37: 285-298.    

143. Lanzafame R, Mauro S, Messina M (2013) Wind turbine CFD modeling using a correlation-based transitional model. Renewable Energy 52: 31-39.    

144. Potsdam M, Mavriplis D, Unstructured mesh CFD aerodynamic analysis of the NREL Phase VI rotor. Proc, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 1221.

145. Rajvanshi D, Baig R, Pandya R, et al., Wind turbine blade aerodynamics and performance analysis using numerical simulations. Proc, 11th Asian International Conference on Fluid Machinery.

146. Moshfeghi M, Song YJ, Xie YH (2012) Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine. J Wind Eng Ind Aerodyn 107: 94-105.

147. El Kasmi A, Masson C (2008) An extended k-ε model for turbulent flow through horizontal-axis wind turbines. J Wind Eng Ind Aerodyn 96: 103-122.    

148. AbdelSalam AM, Ramalingam V (2014) Wake prediction of horizontal-axis wind turbine using full-rotor modeling. J Wind Eng Ind Aerodyn 124: 7-19.    

149. Rütten M, Penneçot J, Wagner C (2009) Unsteady Numerical Simulation of the Turbulent Flow around a Wind Turbine. Progress in Turbulence III, Springer, 103-106.

150. Abdulqadir SA, Iacovides H, Nasser A (2017) The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines. Energy 119: 767-799.    

151. You JY, Yu DO, Kwon OJ (2013) Effect of turbulence models on predicting HAWT rotor blade performances. J Mech Sci Technol 27: 3703-3711.    

152. Bouhelal A, Smaili A, Guerri O, et al. (2018) Numerical investigation of turbulent flow around a recent horizontal axis wind Turbine using low and high Reynolds models. J Appl Fluid Mech 11: 151-164.    

153. Sørensen NN, Michelsen J, Schreck S (2002) Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft×120 ft wind tunnel. Wind Energy: Int J Prog Appl Wind Power Convers Technol 5: 151-169.

154. Johansen J, Sørensen NN, Michelsen J, et al. (2002) Detached‐eddy simulation of flow around the NREL Phase VI blade. Wind Energy: Int J Prog Appl Wind Power Convers Technol 5: 185-197.

155. Duque EP, Burklund MD, Johnson W (2003) Navier-Stokes and comprehensive analysis performance predictions of the NREL phase VI experiment. J Sol Energy Eng 125: 457-467.    

156. Johansen J, Sørensen NN (2004) Aerofoil characteristics from 3D CFD rotor computations. Wind Energy: Int J Prog Appl Wind Power Convers Technol 7: 283-294.

157. Mandas N, Cambuli F, Carcangiu CE (2006) Numerical prediction of horizontal axis wind turbine flow. University of Caglairi, EWEC.

158. Sezer-Uzol N, Long L, 3-D time-accurate CFD simulations of wind turbine rotor flow fields. Proc, 44th AIAA Aerospace Sciences Meeting and Exhibit, 394.

159. Hu D, Hua O, Du Z (2006) A study on stall-delay for horizontal axis wind turbine. Renewable Energy 31: 821-836.    

160. Simms D, Robinson M, Hand M, et al. (1995) A comparison of baseline aerodynamic performance of optimally-twisted versus non-twisted HAWT blades. National Renewable Energy Lab., Golden, CO (United States).

161. Wußow S, Sitzki L, Hahm T, 3D-simulation of the turbulent wake behind a wind turbine. Proc, J Physics: Conference Series, IOP Publishing, 012033.

162. Thumthae C, Chitsomboon T (2009) Optimal angle of attack for untwisted blade wind turbine. Renewable Energy 34: 1279-1284.    

163. Fletcher TM, Brown R, Kim DH, et al. (2009) Predicting wind turbine blade loads using vorticity transport and RANS methodologies. Proc, European Wind Energy Conference and Exhibition, EWEC 2009.

164. Sørensen NN (2009) CFD modelling of laminar‐turbulent transition for airfoils and rotors using the γ− model. Wind Energy: Int J Prog Appl Wind Power Convers Technol 12: 715-733.

165. Gomez-Iradi S, Steijl R, Barakos G (2009) Development and validation of a CFD technique for the aerodynamic analysis of HAWT. J Sol Energy Eng, 131.

166. Tachos N, Filios A, Margaris D (2010) A comparative numerical study of four turbulence models for the prediction of horizontal axis wind turbine flow. Proc Inst Mech Eng Part C: J Mech Eng Sci 224: 1973-1979.    

167. Fu P, Farzaneh M (2010) A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J Wind Eng Ind Aerodyn 98: 181-188.    

168. Bechmann A, Sørensen NN, Zahle F (2011) CFD simulations of the MEXICO rotor. Wind Energy 14: 677-689.    

169. Elfarra MA, Sezer‐Uzol N, Akmandor IS (2014) NREL VI rotor blade: numerical investigation and winglet design and optimization using CFD. Wind Energy 17: 605-626.    

170. Abdelsalam AM, Boopathi K, Gomathinayagam S, et al. (2014) Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine. J Wind Eng Ind Aerodyn 128: 54-65.    

171. Song Y, Perot JB (2015) Cfd simulation of the nrel phase vi rotor. Wind Eng 39: 299-309.    

172. Derakhshan S, Tavaziani A (2015) Study of wind turbine aerodynamic performance using numerical methods. J Clean Energy Technol 3: 83-90.    

173. Sørensen NN, Zahle F, Boorsma K, et al. CFD computations of the second round of MEXICO rotor measurements. Proc, J Physics: Conference Series, IOP Publishing, 022054.

174. Wang L, Quant R, Kolios A (2016) Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. J Wind Eng Ind Aerodyn 158: 11-25.    

175. Menegozzo L, Dal Monte A, Benini E, et al. (2018) Small wind turbines: A numerical study for aerodynamic performance assessment under gust conditions. Renewable Energy 121: 123-132.    

176. Bolinger M, Wiser R (2009) Wind power price trends in the United States: struggling to remain competitive in the face of strong growth. Energy Policy 37: 1061-1071.    

177. Giebel G, Brownsword R, Kariniotakis G, et al. (2011) The state-of-the-art in short-term prediction of wind power: A literature overview.

178. Albadi M, El-Saadany E (2010) Overview of wind power intermittency impacts on power systems. Electr Power Syst Res 80: 627-632.    

179. Cavallo A (2007) Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES). Energy 32: 120-127.    

180. Sovacool BK (2009) The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Utilities Policy 17: 288-296.    

181. Spinato F, Tavner PJ, Van Bussel GJ, et al. (2009) Reliability of wind turbine subassemblies. IET Renewable Power Gener 3: 387-401.    

182. Walford CA (2006) Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs. Sandia National Laboratories.

183. Faulstich S, Hahn B, Tavner PJ (2011) Wind turbine downtime and its importance for offshore deployment. Wind Energy 14: 327-337.    

184. Boyle G (2009) Renewable electricity and the grid: the challenge of variability, Routledge.

185. Piwko R, MillerN, Sanchez-Gasca J, et al. (2006) Integrating large wind farms into weak power grids with long transmission lines. Proc, 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, IEEE, 1-7.

186. Perveen R, Kishor N, Mohanty SR (2014) Off-shore wind farm development: Present status and challenges. Renewable Sustainable Energy Rev 29: 780-792.    

187. Barlas TK, van Kuik GA (2010) Review of state of the art in smart rotor control research for wind turbines. Prog Aerosp Sci 46: 1-27.    

188. Bossanyi E, Savini B, Iribas M, et al. (2012) Advanced controller research for multi‐MW wind turbines in the UPWIND project. Wind Energy 15: 119-145.    

189. Márquez FPG, Tobias AM, Pérez JMP, et al. (2012) Condition monitoring of wind turbines: Techniques and methods. Renewable Energy 46: 169-178.    

190. Hameed Z, Hong Y, Cho Y, et al. (2009) Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable Sustainable Energy Rev 13: 1-39.    

191. Blaabjerg F, Ma K (2013) Future on power electronics for wind turbine systems. IEEE J Emerging Selected Topics Power Electron 1: 139-152.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved