AIMS Energy, 2019, 7(6): 743-759. doi: 10.3934/energy.2019.6.743.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Theoretical analysis and mathematical modeling of a solar cogeneration system in Morocco

Laboratory of Renewable Energies and Environment, Faculty of Sciences, Ibn Tofail University, BP. 133. 14000-Kenitra, Morocco

This article is part of a theoretical study based on the mathematical analysis of the new technology of solar cogeneration using the parabolic trough concentrator and the photovoltaic cell. Our main objective is to study the thermal performance of the parabolic cylindrical concentrator in the Rabat-Salé-Kénitra region of Morocco. The methodology is based on solving the energy balance equation of the thermal collector whose elements are the absorber, glass and fluid. The performance of these equations is obtained by the Runge Kutta (RK4) method based on experimental data extracted from the PVGIS software. The numerical solution is found by the Matlab code. The validation test is verified on the studied region of Rabat-Salé-Kénitra. The results of the comparison between the numerical solution and the experimental data corresponding to the different temperature of the thermal collector are encouraging. Finally the thermal performance of the collector is satisfied.
  Figure/Table
  Supplementary
  Article Metrics

Keywords solar cogeneration; parabolic trough collector; energy balance; RK4

Citation: Saad Eddin Lachhab, A. Bliya, E. Al Ibrahmi, L. Dlimi. Theoretical analysis and mathematical modeling of a solar cogeneration system in Morocco. AIMS Energy, 2019, 7(6): 743-759. doi: 10.3934/energy.2019.6.743

References

  • 1. Hoffmann W (2006) PV solar electricity industry: market growth and perspective. Sol Energ Mat Sol C 90: 3285-3311.
  • 2. Caluianu IR, Băltăreţu F (2012) Thermal modelling of a photovoltaic module under variable free convection conditions. Appl Therm Eng 33: 86-91.
  • 3. Youssef WB, Maatallah T, Menezo C, et al. (2018) Assessment viability of a concentrating photovoltaic/thermal-energy cogeneration system (CPV/T) with storage for a textile industry application. Sol Energ 159: 841-851.
  • 4. Sharma KM, Spandana YS, Krishna LN (2015) Generation of hybrid power by wind and solar cogeneration techniques. International Journal of Scientific Research Engineering and Technology (IJSRET) ISSN: 2278-0882 EATHD-2015 Conference Proceeding, Jalandhar, India.
  • 5. Nia MH, Nejad AA, Goudarzi AM, et al. (2014) Cogeneration solar system using thermoelectric module and fresnel lens. Energ convers manage 84: 305-310.    
  • 6. Zhou C, Liang R, Zhang J (2017) Optimization design method and experimental validation of a solar pvt cogeneration system based on building energy demand. Energies 10: 1281.    
  • 7. Florschuetz LW (1979) Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol Energ 22: 361-366.    
  • 8. Agarwal RK, Garg HP (1994) Study of a photovoltaic-thermal system-thermosyphonic solar water heater combined with solar cells. Energ Convers Manage 35: 605-620.    
  • 9. Barkaoui AE, Zarhloule Y, Rimi A, et al. (2015) Proceedings of Geothermal Country Update report of Morocco (2010-2015).
  • 10. Jiang S, Hu P, Mo S, et al. (2010) Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology. Sol Energ Mat Sol C 94: 1686-1696.    
  • 11. Isotani S, Pontuschka WM, Isotani S (2012) An algorithm to optimize the calculation of the fourth order Runge-Kutta method applied to the numerical integration of kinetics coupled differential equations. Appl Math 3: 1583.    
  • 12. Chaturvedi DK (2017) Modeling and simulation of systems using MATLAB and Simulink, 1 Eds., CRC press.
  • 13. Rosell JI, Vallverdu X, Lechon MA, et al. (2005) Design and simulation of a low concentrating photovoltaic/thermal system. Energ Convers Manage 46: 3034-3046.    
  • 14. Poullikkas A (2009) Economic analysis of power generation from parabolic trough solar thermal plants for the mediterranean region-a case study for the island of Cyprus. Renew sust Energ rev 13: 2474-2484.    
  • 15. García-Valladares O, Velázquez N (2009) Numerical simulation of parabolic trough solar collector: improvement using counter flow concentric circular heat exchangers. Int J Heat Mass Tran 52: 597-609.    
  • 16. Cheng ZD, He YL, Cui FQ, et al. (2014) Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model. Appl energ 115: 559-572.    
  • 17. Tao YB, He YL (2010) Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube. Sol energ 84: 1863-1872.    
  • 18. Kakaç S, Pramuanjaroenkij A (2016) Analysis of convective heat transfer enhancement by nanofluids: single-phase and two-phase treatments. J Eng Phys Thermophys 89: 758-793.    
  • 19. Dogonchi AS, Ganji DD (2016) Convection-radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Appl Therm Eng 103: 705-712.    
  • 20. Verma SK, Tiwari AK (2015) Progress of nanofluid application in solar collectors: a review. Energ Convers Manage 100: 324-346.    
  • 21. Ganji DD, Ganji SS, Karimpour S, et al. (2010) Numerical study of homotopy-perturbation method applied to Burgers equation in fluid. Numer Meth Part D E: Int J 26: 917-930.
  • 22. Ghazouani K, Skouri S, Bouadila S, et al. (2019) Thermal analysis of linear solar concentrator for indirect steam generation. Energ Procedia 162: 136-145.    
  • 23. Alobaid M, Hughes B, O'Connor D, et al. (2018) Improving thermal and electrical efficiency in photovoltaic thermal systems for sustainable cooling system integration. J Sustain Dev Energ, Water Environ Syst 6: 305-322.    
  • 24. Belhocine A, Omar W, Zaidi W (2018) Similarity solution and Runge Kutta method to a thermal boundary layer model at the entrance region of a circular tube: the Lévêque Approximation. Sci mag 31: 6-18.
  • 25. Colella P, Dorr MR, Wake DD (1999) A conservative finite difference method for the numerical solution of plasma fluid equations. J Comput Phys 149: 168-193.    
  • 26. Chiad BT, Kasim NK, Mutlak FAH, et al. (2011) Parabolic trough solar collector-design, construction and testing. Baghdad Sci J 8: 658-665.    
  • 27. Suri M, Huld T, Dunlop E, et al. (2006) Online data and tools for estimation of solar electricity in Africa: the PVGIS approach. Proceedings from 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany.
  • 28. Kale PG, Tarai R (2016) Development of rasterized map using PVGIS for assessment of solar PV energy potential of odisha. Int J Renew Energ Res 6: 61-73.
  • 29. Kenny RP, Huld TA, Iglesias S (2006) Energy rating of PV modules based on PVGIS irradiance and temperature database. Proceedings from 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany.
  • 30. Ghodbane M, Boumeddane B (2016) A numerical analysis of the energy behavior of a parabolic trough concentrator. J Fund Appl Sci 8: 671-691.
  • 31. Šúri M, Huld TA, Dunlop ED, et al. (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol energ 81: 1295-1305.    
  • 32. Kazemi-Kamyab V, Van Zuijlen AH, Bijl H (2014) Analysis and application of high order implicit Runge-Kutta schemes for unsteady conjugate heat transfer: a strongly-coupled approach. J Comput Phys 272: 471-486.    

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved