Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Assess the local electricity consumption: the case of Reunion island through a GIS based method

1 University of La Reunion, PIMENT Laboratory, 117 rue du Général Ailleret 97430 Le Tampon, France
2 University of La Reunion, Department of Building Sciences and Environment, France

Topical Section: Energy Policy and Economics

Succeeding energy transition is the current challenging objective of many remote islands such as Reunion Island to reduce their dependency to fossil resources. To define an efficient energy framework strategy for the territory, it is important to be able to assess the electricity consumption intensity per typology of consumers. A particular attention must be paid on building electricity consumption in energy planning scenarios. This paper proposes to investigate the electricity consumption ratio per square meter per building type which appears as a relevant indicator. The proposed methodology aims at filling the lack of data (ratio kWh/m2/ type of consumers) when this information doesn’t exist for a territory. This type of ratio can be useful in two ways: on the one hand to characterize the building energy demand, and, on the other hand, to understand the consumption mode of the inhabitants. We can therefore provide future energy policy framework in favor of demand-side management what is a key step, a lock to solve for the deployment of sustainable cities. This work calculates electricity consumption ratios per area by using a GIS (Geographic Information System) method, distinguishing the type of building. The case of Reunion Island is studied and four building categories are identified corresponding to the functional characteristics such as industry, administration, companies and residential. The results highlight that residential sector has one of the lowest electricity ratios with a value of 29.84 kWh/m2, but also the highest part of electricity consumption, 45.2%. The different ratio value has been cross validated by estimating municipalities electricity consumption based on the distribution of consumers and the associated ratio.
  Article Metrics


1. EDF (2013) Il était une fois les réglementations thermiques. Available from: https://travaux.edf.fr/construction-et-renovation/la-reglementation-thermique-2012/il-etait-une-fois-les-reglementations-thermiques.

2. JORF (1996) LOI n° 96-1236 du 30 décembre 1996 sur l'air et l'utilisation rationnelle de l'énergie (1). Available from: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte= JORFTEXT000000381337&categorieLien=id.

3. JORF (2005) Loi n° 2005-781 du 13 juillet 2005 de programme fixant les orientations de la politique énergétique. Available from: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte= JORFTEXT000000813253&categorieLien=id.

4. JORF (2010) LOI n° 2010-788 du 12 juillet 2010 portant engagement national pour l'environnement (1). Available from: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte= JORFTEXT000022470434&categorieLien=id.

5. JORF (2015) LOI n° 2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte (1). Available from: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte= JORFTEXT000031044385&categorieLien=id.

6. Cheng MY, Chiu KC, Lien LC, et al. (2016) Economic and energy consumption analysis of smart building–MEGA house. Build Environ 100: 215–226.    

7. ADEME. Climat, Air et Energie, Chiffres clés; 2013.

8. Durable CGaD. Repères-Ciffres clés de l'environnement; 2015; Paris.

9. Ma JJ, Du G, Zhang ZK, et al. (2017) Life cycle analysis of energy consumption and CO2 emissions from a typical large office building in Tianjin, China. Build Environ 117: 36–48.    

10. Blom I, Itard L, Meijer A (2011) Environmental impact of building-related and user-related energy consumption in dwellings. Build Environ 46: 1657–1669.    

11. Parshall L, Gurney K, Hammer SA, et al. (2010) Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States. Energ Policy 38: 4765–4782.    

12. Réunion OE. Bilan énergétique Ile de La Réunion 2015; 2016.

13. Amado M, Poggi F, Amado AR (2016) Energy efficient city: A model for urban planning. Sustain Cities Soc 26: 476–485.    

14. Bénard-Sora F, Praene JP (2016) Territorial analysis of energy consumption of a small remote island: Proposal for classification and highlighting consumption profiles. Renew Sust Energ Rev 59: 636–648.    

15. Mungwe J, Mandelli S, Colombo E (2016) Community pico and micro hydropower for rural electrification: experiences from the mountain regions of Cameroon. AIMS Energy 4: 190–205.    

16. Dornan M (2015) Reforms for the expansion of electricity access and rural electrification in small island developing states. AIMS Energy 3: 463–479.    

17. Wolf F, Surroop D, Singh A, et al. (2016) Energy access and security strategies in small island developing states. Energ Policy 98: 663–673.    

18. Alhamwi A, Medjroubi W, Vogt T, et al. (2017) GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas. Appl Energ 191: 1–9.    

19. Li C (2017) GIS for Urban Energy Analysis. Reference Module in Earth Systems and Environmental Sciences.

20. Man SW, Zhu R, Liu Z, et al. (2016) Estimation of Hong Kong's solar energy potential using GIS and remote sensing technologies. Renew Energ 99: 325–335.    

21. Nematollahi O, Kim KC (2017) A feasibility study of solar energy in South Korea. Renew Sust Energ Rev 77: 566–579.    

22. Yushchenko A, Bono AD, Chatenoux B, et al. (2017) GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renew Sust Energ Rev 81: 2088–2103.

23. Mentis D, Hermann S, Howells M, et al. (2015) Assessing the technical wind energy potential in Africa a GIS-based approach. Renew Energ 83: 110–125.    

24. Cristea C, Jocea AF (2016) GIS Application for wind energy. Energ Procedia 85: 132–140.    

25. Cavazzi S, Dutton AG (2016) An offshore wind energy geographic information system (OWE-GIS) for assessment of the UK's offshore wind energy potential. Renew Energ 87: 212–228.    

26. Jangid J, Bera AK, Joseph M, et al. (2016) Potential zones identification for harvesting wind energy resources in desert region of India? A multi criteria evaluation approach using remote sensing and GIS. Renew Sust Energ Rev 65: 1–10.

27. Anwarzai MA, Nagasaka K (2017) Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renew Sust Energ Rev 71: 150–160.    

28. Vasileiou M, Loukogeorgaki E, Vagiona DG (2017) GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renew Sust Energ Rev 73: 745–757.    

29. Quan SJ, Li Q, Augenbroe G, et al. (2015) A GIS-based energy balance modeling system for urban solar buildings. Energ Procedia 75: 2946–2952.    

30. Mutani G, Delmastro C, Gargiulo M, et al. (2016) Characterization of building thermal energy consumption at the urban scale. Energ Procedia 101: 384–391.    

31. Tornay N, Schoetter R, Bonhomme M, et al. (2017) GENIUS: A methodology to define a detailed description of buildings for urban climate and building energy consumption simulations. Urban Climate 20: 75–93.    

32. Palme M, Inostroza L, Villacreses G, et al. (2017) From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect. Energ Buildings 145: 107–120.

33. Jiang Y, Gu P, Chen Y, et al. (2017) Modelling household travel energy consumption and CO2 emissions based on the spatial form of neighborhoods and streets: A case study of Jinan, China. Computers, Environment and Urban Systems.

34. Lu H, Liu G (2014) Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting. Appl Energ 131: 297–306.    

35. Yamamura S, Fan L, Suzuki Y (2017) Assessment of urban energy performance through integration of BIM and GIS for smart city planning. Procedia Eng 180: 1462–1472.    

36. Niu S, Pan W, Zhao Y (2015) A BIM-GIS integrated web-based visualization system for low energy building design. Procedia Eng 121: 2184–2192.    

37. ADEME. Bâtiment, Edition 2013, Chiffres Clés; 2013.

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved