Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

An economic comparison of dedicated crops vs agricultural residues as feedstock for biogas of vehicle fuel quality

1 Environmental and Energy Systems Studies, Lund University, PO Box 118, SE-22100 Lund, Sweden
2 Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden

Topical Section: Renewable Energy

The vast majority of the biofuels presently used in the EU are so called first generation biofuels produced from crops. Concerns of food security, displacement of food crop production and indirect land use change (iLUC) has led to the introduction of measures to reduce the use of first generations biofuels and promote so called advanced biofuels based on feedstock that does not compete with food/feed crops, such as waste and agricultural residues. In Sweden, 60% of the biofuel consumption is already based on waste/residual feedstock, and a unique feature of the Swedish biofuel supply is the relatively large use of biogas for transport, representing 9% of the current use of biofuels. The use of waste/residues dominates the biogas production, but agricultural residues, representing a large domestic feedstock potential, are barely used at present. This could indicate that biofuels from such feedstock is non-competitive compared both to fossil fuels and to biofuels produced from crops and waste under existing policy framework. This study show that without subsidies, the production cost of biogas as biofuel from all non-food feedstocks investigated (grass, crop residues and manure) is higher than from food crops. A shift from food crops to residues, as desired according to EU directives, would thus require additional policy instruments favoring advanced biofuel feedstock. Investment or production subsidies must however be substantial in order for biogas from residues to be competitive with biogas from crops.
  Article Metrics

Keywords biogas; biofuel; techno-economic; residues; production cost; EU RED

Citation: Mikael Lantz, Emma Kreuger, Lovisa Björnsson. An economic comparison of dedicated crops vs agricultural residues as feedstock for biogas of vehicle fuel quality. AIMS Energy, 2017, 5(5): 838-863. doi: 10.3934/energy.2017.5.838


  • 1. EU (2009) DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union.
  • 2. Eurostat (2017) Energy from renewable sources. Available from: http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_from_renewable_sources.
  • 3. EurObservÉR (2016) Biofuels Barometer 2016. EurObservÉR.
  • 4. Fritsche UR, Wiegmann K (2011) Indirect land use change and biofuels. Committee on Environment, Public Health and Food Safety, European Parliament, Brussels.
  • 5. EU (2015) DIRECTIVE (EU) 2015/1513 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Official Journal of the European Union.
  • 6. SEA (2016) Transportsektorns energianvändning 2015 [Use of energy in the transportation sector 2015]. The Swedish Energy Agency. ES 2016: 03.
  • 7. SEA (2016) Produktion och användning av biogas och rötrester 2015 [Production and utilization of biogas and digestate 2015]. The Swedish Energy Agency.
  • 8. EurObservÉR (2016) The state of renewable energies in Europe-Edition 2016, 16th EurObservÉR Report. EurObservÉR.
  • 9. FNR (2016) Bioenergy in Germany-Facts and Figures 2016. Fachagentur Nachwachsende Rohstoffe e.V.
  • 10. Grahn M, Hansson J (2015) Prospects for domestic biofuels for transport in Sweden 2030 based on current production and future plans. Wires Energy Environ 4: 290–306.    
  • 11. STA (2016) Styrmedel och åtgärder för att minska transportsystemets utsläpp av växthusgaser–med fokus på transportinfrastrukturen [Policy instruments and measures to reduce emissions of GHG from the transport system-with focus on transport infrastructure]. The Swedish Transport Administration.
  • 12. STA (2016) Åtgärder för att minska transportsektorns utsläpp av växthusgaser–ett regeringsuppdrag [Measures to reduce GHG emissions from the transport sector-a government assignment]. The Swedish Transport Administration.
  • 13. SOU (2016) En klimat-och luftvårdsstrategi för Sverige [A climate and air pollution strategi] Swedish Government Official Report.
  • 14. Gissén C, Prade T, Kreuger E, et al. (2014) Comparing energy crops for biogas production–yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenerg 64: 199–210.    
  • 15. Börjesson P, Prade T, Lantz M, et al. (2015) Energy crop-based biogas as vehicle fuel: the impact of crop selection on energy efficiency and greenhouse gas performance. Energies 8: 6033–6058.    
  • 16. FNR (2010) Biogas Messprogramm II-61 Biogasanlagen im Vergleich. Gulzow: Bundesministerium fur Ernährung, Landwirtshafts und Verbraucherschutz.
  • 17. Hjort-Gregersen K (2015) Udvikling og effektivisering af biogasproduktionen i Danmark - Ökonomi, nögletal og benchmark, Energistyrelsens Biogas Taskforce. AgroTech.
  • 18. Möller HB, Nielsen KJ (2015) Udvikling og effektivisering af biogasproduktionen i Danmark, Faglig rapport, Biogas Taskforce. Inst. for Ingeniörvidenskab, Aarhus Universitet.
  • 19. SJV (2016) Rötning av animaliska biprodukter, 2016-10-24 Jordbruksverket.
  • 20. Lantz M, Ekman A, Börjesson P (2009) Systemoptimerad produktion av fordonsgas, Report 69. Lund, Sweden: Department of Technology and Society, Lund University. 69. 110 p.
  • 21. Petersson A, Wellinger A (2009) Biogas upgrading technologies–development and innovations. IEA Bioenergy Task 37, European Commission Joint Research Centre, Petten, The Netherlands.
  • 22. IEA (2016) Biogas upgrading plant list, data up to the end of 2015. IEA Bioenergy Task 37, European Commission Joint Research Centre, Petten, The Netherlands.
  • 23. Bauer F, Hultenberg C, Persson T, et al. (2013) Biogas upgrading–Review of commercial technologies. Malmö: Svenskt Gastekniskt Center. Rapport 2013: 270.
  • 24. Hoyer K, Hultenberg C, Svensson M, et al. (2016) Biogas Upgrading–Technical Review. Energiforsk.
  • 25. Urban W, Girod K, Lohmann H (2008) Technologien und Kosten der Biogasaufbereitung und Einspeisung in das Erdgasnetz. Ergebnisse der Markterhebung 2007–2008. Fraunhofer-Institut für Umwelt- Sicherheits- und Energietechnik, Oberhausen, Germany.
  • 26. Berglund P, Bohman M, Svensson M, et al. (2012) Teknisk och ekonomisk utvärdering av lantbruksbaserad fordonsgasproduktion. Swedish Gas Technology Centre.
  • 27. Colnerud GS, Gåverud H, Glimhall A (2010) Förändrade marknadsvillkor för biogasproduktion. The Energy Market Inspectorate.
  • 28. Walla C, Schneeberger W (2008) The optimal size for biogas plants. Biomass Bioenerg 32: 551–557.    
  • 29. Börjesson P, Lantz M, Andersson J, et al. (2016) METHANE AS VEHICLE FUEL–A WELL-TO-WHEEL ANALYSIS (METDRIV), report 2016:06 f3 The Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden.
  • 30. Berglund M, Börjesson P (2006) Assesment of energy performance in the life-cycle of biogas production. Biomass Bioenerg 30: 254–266.
  • 31. Brown J, Nizami AS, Thamsiriroj T, et al. (2011) Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland. Renew Sust Energ Rev 15: 4537–4547.    
  • 32. Jury C, Benetto E, Koster D, et al. (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenerg 34: 54–66.
  • 33. FNR (2006) Handreichung Biogasgewinnung und nutzung. Fachagentur Nachwachsende Rohstoffe e.V., Bundesministerium für Ernährung, Landwirtschaft and Verbraucherschutz, Gülzow-Prüzen, German.
  • 34. Murphy J, Braun R, Weiland P, et al. (2011) Biogas from Crop digestion. Available from: https://www.nachhaltigwirtschaften.at/resources/iea_pdf/reports/iea_bioenergy_task37_biogas_from_crop_digestion.pdf.
  • 35. FNR (2005) Ergebnisse des Biogas-Messprogram. Fachagentur Nachwachsende Rohstoffe e.V., Bundesministerium für Ernährung, Landwirtschaft and Verbraucherschutz, Gülzow-Prüzen, Germany.
  • 36. Lundqvist P (2009) Fjärrvärme för utökad biogasproduktion–Teknisk och ekonomisk utvärdering av fjärrvärme för uppvärmning av biogasprocesser. Thermal Engineering Research Institute, Stockholm, Sweden.
  • 37. Norin E (2007) Alternativa hygieniseringsmetoder. Swedish Gas Technology Centre, Malmö, Sweden.
  • 38. Rosenqvist H (2017) Kalkyler för energigrödor 2017-fastbränsle, biogas, spannmål och raps. Jordbruksverket.
  • 39. Björnsson L, Prade T, Lantz M (2016) Grass for biogas-Arable land as carbon sink, Report 2016:280. Energiforsk.
  • 40. Valin H, Peters D, Berg Mvd, et al. (2015) The land use change impact of biofuels consumed in the EU - Quantification of area and greenhouse gas impacts. ECOFYS.
  • 41. Kreuger E, Prade T, Björnsson L, et al. (2014) Biogas från Skånsk betblast - potential, teknik och ekonomi [Biogas from beet tops in Scania-potential, technology and economy]. Environmental and Energy System Studies, Lund University.
  • 42. SCB (2017) Price Indices and Prices in the Food Sector-Annual and Monthly Statistics-2017:06. Statistics Sweden. JO 49 SM 1708.
  • 43. Energimyndigheten (2017) Trädbränsle- och torvpriser Nr 3 2017. Swedish Statistics.
  • 44. Hansen MT (2015) Standardforutsaetninger-til VE til process-ansögningsmateriale. FORCE Technology.
  • 45. Odhner PB, Svensson SE, Prade T (2015) Extruder för ökad biogasproduktion [Extrusion increases the production of biogas], Report 2015: 26 Sveriges lantbruksuniversitet, Fakulteten för landskapsarkitektur, trädgårds- och växtproduktionsvetenskap.
  • 46. FNR (2010) Guide for biogas-From production to use Nachwachsende Rohstoffe e.V., Bundesministerium für Ernährung, Landwirtschaft and Verbraucherschutz, Gülzow-Prüzen, Germany.
  • 47. FNR (2010) Leitfaden Biogas–Von der Gewinnung zur Nutzung. Nachwachsende Rohstoffe e.V. Gülzow-Prüzen, Germany: Bundesministerium für Ernährung, Landwirtschaft and Verbraucherschutz.
  • 48. FNR (2016) Leitfaden Biogas–Von der Gewinnung zur Nutzung. Nachwachsende Rohstoffe e.V. Gülzow-Prüzen, Germany: Bundesministerium für Ernährung, Landwirtschaft and Verbraucherschutz.
  • 49. Lantz M, Björnsson L (2011) Biogas från gödsel och vall-analys av föreslagna styrmedel. The Federation of Swedish Farmers, Stockholm, Sweden: LRF.
  • 50. Berglund P (2010) Biogödselhandbok–Biogödsel från storskaliga biogasanläggningar. Swedish Waste Management.
  • 51. SEA (2017) Trädbränsle och torvpriser [Wood fuel and peat prices], Nr 1 2017. The Swedish Energy Agency.
  • 52. SCB (2016) Priser på el för industrikunder [Electricity price for industries]. Available from: http://www.scb.se/hitta-statistik/statistik-efter-amne/energi/prisutvecklingen-inom-energiomradet/energipriser-pa-naturgas-och-el/pong/tabell-och-diagram/genomsnittspriser-per-halvar-2007/priser-pa-el-for-industrikunder-2007/, accessed 2017-05-23.
  • 53. Smyth B, H S, Murphy J (2010) Can grass biomethane be an economically viable biofuel for the farmer and the consumer? Biofuel Bioprod Bio 4: 519–537.    
  • 54. Lantz M (2013) Biogas in Sweden-opportunities and challenges from a systems perspective. Lund, Sweden: Lund University.
  • 55. SJV (2016) Rekommendationer för gödsling och kalkning 2017, Report JO16:24. The Swedish Board of Agriculture. Jönköping, Sweden.
  • 56. Nutrients Fo (2011) Stallgödselkalkyl (Manure calculator) version 2011-03-31. accessed 2012-10-18.
  • 57. Lantz M, Svensson M, Björnsson L, et al. (2007) The prospects for an expansion of biogas systems in Sweden–Incentives, barriers and potentials. Energy Policy 35: 1830–1843.
  • 58. EC (2015) Statligt stöd-Skattebefrielser och skattenedsättningar för flytande drivmedel, C(2015) 9344. European Commission.
  • 59. EC (2015) Statligt stöd-Skattebefrielser för biogas som används som motorbränsle, C(2015) 9345. European Commission.
  • 60. Regeringen (2017) Reduktion av växthusgasutsläpp genom inblandning av biodrivmedel i bensin och dieselbränslen, Lagrådsremiss In: energidepartementet M-o, editor: The government of Sweden.
  • 61. SJV (2017) Gödselgasstöd. Available from: http://www.jordbruksverket.se/amnesomraden/ stod/andrastod/godselgasstod.4.ac526c214a28250ac23333e.html, accessed 20170613.
  • 62. SJV (2017) Investeringsstöd till biogas. Available from: http://www.jordbruksverket.se/amnesomraden/stod/stodilandsbygdsprogrammet/investeringar/biogas.4.6ae223614dda2c3dbc44f95.html, accessed.
  • 63. EC (2014) COMMISSION REGULATION (EU) No 651/2014 of 17 June 2014 declaring certain categories of aid compatible with the internal market in application of Articles 107 and 108 of the Treaty In: COMMISSION TE, editor. Official Journal of the European Union.
  • 64. SPBI (2017) Priser och skatter. Available from: http://spbi.se/statistik/priser/, accessed.
  • 65. Karlsson S, Rodhe L (2002) Översyn av Statistiska Centralbyråns beräkning av ammoniakavgången i jordbruket–emissionsfaktorer för ammoniak vid lagring och spridning av stallgödsel.
  • 66. Bengtsson B, Rasic Z (2005) Kadmium i odlingssystem med tillförsel av rötslam. Jord-skörd- och markvatten-analyser. Department of plant sciences, Swedish University of Agricultural Sciences, Alnarp, Sweden.
  • 67. Roth U, Wulf S (2010) Gasausbeute in landwirtschaftlichen Biogasanlagen, KTBL-Heft 88. Kuratorium Fur Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, Germany.
  • 68. ECN (2014) The database Phyllis2: Biomass and waste. Available from: https://www.ecn.nl/phyllis2, accessed 2017-04-03.
  • 69. Tamaki Y, Mazza G (2010) Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: Effects of extractives, particle size and crop species. Ind Crop Prod 31: 534–541.    
  • 70. Björnsson L, Castillo MdP, Gunnarsson C, et al. (2014) Förbehandling av lignocellulosarika råvaror för biogasproduktion-Nyckelaspekter vid jämförande utvärdering. Lund, Sweden: Environmental and Energy Systems Studies.
  • 71. Moller HB, Sommer SG, Ahring B (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenerg 26: 485–495.    
  • 72. Amon T, Amon B, Kryvoruchko V, et al. (2007) Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agr Ecosyst Enviro 118: 173–182.
  • 73. Mähnert P, Linke B (2009) Kinetic study of biogas production from energy crops and animal waste slurry: Effect of organic loading rate and reactor size. Environ Technol 30: 93–99.
  • 74. McCarty PL (1964) Anaerobic waste treatment fundamentals, Part one, Chemistry and microbiology. Public Works 95: 107–112.
  • 75. FNR (2010) Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. Fachagentur Nachwachsende Rohstoffe e.V., Bundesministerium für Ernährung, Landwirtschaft and Verbraucherschutz, Gülzow-Prüzen, Germany.
  • 76. Ljung E, Palm O, Rodhe L (2013) Ökad acceptans för biogödsel inom lantbruket. Uppsala, Sweden: JTI-Institutet för jordbruks-och miljöteknik.
  • 77. Procházka J, Dolejš P, Máca J, et al. (2012) Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl Microbiol Biot 93: 439–447.    
  • 78. Schnürer A, Nordberg Å (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57: 735–740.
  • 79. Scherer P, Lippert H, Wolff G (1983) Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry Biol Trace Elem Res 5: 149–163.
  • 80. Banks CJ, Zhang Y, Jiang Y, et al. (2012) Trace element required for stable food waste digestion at elevated ammonia concentrations. Bioresource Technol 104: 127–135.    
  • 81. Overend R (1982) Haul distance and transportation work factors for biomass. Biomass 2: 75–79.    
  • 82. Börjesson P, Gustavsson L (1996) Regional production and utilization of biomass in Sweden. Energy 21: 747–764.    
  • 83. Björnsson L, Lantz M, Murto M, et al. (2011) Biogaspotential i Skåne-inventering och planeringsunderlag på översiktsnivå [The biogas potential in Scania-inventory and data for planning]. The County Administrative Board of Skåne.


This article has been cited by

  • 1. Mikael Lantz, Thomas Prade, Serina Ahlgren, Lovisa Björnsson, Biogas and Ethanol from Wheat Grain or Straw: Is There a Trade-Off between Climate Impact, Avoidance of iLUC and Production Cost?, Energies, 2018, 11, 10, 2633, 10.3390/en11102633
  • 2. Thomas Prade, Sven-Erik Svensson, Torsten Hörndahl, Emma Kreuger, Impact of Harvest Date and Cutting Length of Grass Ley and Whole-Crop Cereals on Methane Yield and Economic Viability as Feedstock for Biogas Vehicle Fuel Production, BioEnergy Research, 2018, 10.1007/s12155-018-9952-x
  • 3. Tong Liu, Anna Schnürer, Johanna Björkmalm, Karin Willquist, Emma Kreuger, Diversity and Abundance of Microbial Communities in UASB Reactors during Methane Production from Hydrolyzed Wheat Straw and Lucerne, Microorganisms, 2020, 8, 9, 1394, 10.3390/microorganisms8091394

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Mikael Lantz, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved