Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Hybrid energy converter based on swirling combustion chambers: the hydrocarbon feeding analysis

School of Aerospace Engineering, University of Rome “La Sapienza”, Via Salaria 851, Rome 00138, Italy

Topical Section: Energy and Materials Science

This manuscript reports the latest investigations about a miniaturized hybrid energy power source, compatible with thermal/electrical conversion, by a thermo-photovoltaic cell, and potentially useful for civil and space applications. The converter is a thermally-conductive emitting parallelepiped element and the basic idea is to heat up its emitting surfaces by means of combustion, occurred in swirling chambers, integrated inside the device, and/or by the sun, which may work simultaneously or alternatively to the combustion. The current upgrades consist in examining whether the device might fulfill specific design constraints, adopting hydrocarbons-feeding. Previous papers, published by the author, demonstrate the hydrogen-feeding effectiveness. The project’s constraints are: 1) emitting surface dimensions fixed to 30 × 30 mm, 2) surface peak temperature T > 1000 K and the relative ∆T < 100 K (during the combustion mode), 3) the highest possible delivered power to the ambient, and 4) thermal efficiency greater than 20% when works with solar energy. To this end, a 5 connected swirling chambers configuration (3 mm of diameter), with 500 W of injected chemical power, stoichiometric conditions and detailed chemistry, has been adopted. Reactive numerical simulations show that the stiff methane chemical structure obliges to increase the operating pressure, up to 10 atm, and to add hydrogen, to the methane fuel injection, in order to obtain stable combustion and efficient energy conversion.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved