Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Applying LIDAR datasets and GIS based model to evaluate solar potential over roofs: a review

1 Department of Geography, Complutense University of Madrid, Spain;
2 Department of Energy, CIEMAT, Av. Complutense, 40, Madrid, Spain;
3 Department of Electrical Engineering, Polithecnical University of Madrid, Spain

Special Issues: Remote sensing and Geoinformation Technology to Explore and Predict Renewable Energy Potential

The precise knowledge of the capacity to produce energy from renewable resources requires an adequate study to determine the spatial dimension of the territory. The aim of this paper is to present diverse procedures for the solar potential analysis in urban environments. Models and tools, based on the implementation of geo-information technologies and airborne remote sensing data, have been developed considering a certain level of complexity, where urban structure is composed of different areas characterized by their morphology and function. Before any analysis, establish the available information and define the three-dimensional modeling of the urban environment are the first actions. In addition, techniques for the treatment of data and assess the parameters needed to define the optimal location of solar systems for energy generation, are taken into account. Besides, there is a description of some web services developed to show the results and finally, the advances which may improve the precision and increase the detail degree in these studies.
  Figure/Table
  Supplementary
  Article Metrics

Keywords LIDAR; GIS; solar irradiation; photovoltaic potential

Citation: Ana M. Martín, Javier Domínguez, Julio Amador. Applying LIDAR datasets and GIS based model to evaluate solar potential over roofs: a review. AIMS Energy, 2015, 3(3): 326-343. doi: 10.3934/energy.2015.3.326

References

  • 1. Amado M, Poggi F (2014) Solar Urban Planning: A Parametric Approach. Energy Procedia 48: 1539-1548.    
  • 2. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union L140. pp. 16-62.
  • 3. Bergamasco L, Asinari P (2011) Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy). Sol Energy 85: 1041-1055.    
  • 4. Nex F, Remondino F, Agugiaro G, et al. (2013) 3D Solarweb: A solar cadaster in the Italian Alpine landscape. Int Arch Photogramm Remote Sens Spatial Inform Sci XL-7/W2: 173-178.    
  • 5. Kassner R, Koppe W, Schüttenberg T, et al. (2008) Analysis of the solar potential of roofs by using official LIDAR data. Int Arch Photogramm Remote Sens Spatial Inform Sci XXXVII-B4: 399-403.
  • 6. United Nations, Department of Economic and Social Affairs, Population Division (2014) World Urbanization Prospects: The 2014 Revision, Highlights. 32 p.
  • 7. Carneiro C, Morello E, Desthieux G (2009) Assessment of solar irradiance on the urban fabric for the production of renewable energy using LIDAR data and image processing techniques. In: Springer Berlin Heidelberg, editor. Adv GIScience: 83-112.
  • 8. Jacques DA, Gooding J, Giesekam JJ, et al. (2014) Methodology for the assessment of PV capacity over a city region using low-resolution LIDAR data and application to the City of Leeds (UK). Appl Energy 124: 28-34.    
  • 9. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union L153. 13-35.
  • 10. Amado M, Poggi F (2012) Towards solar urban planning: A new step for better energy performance. Energy Procedia 30: 1261-1273.    
  • 11. Charabi Y, Rhouma MBH, Gastli A (2010) GIS-based estimation of roof-PV capacity & energy production for the Seeb Region in Oman. IEEE Int Energ Conf: 41-44.
  • 12. Nguyen HT, Pearce JM, Harrap R, et al. (2012) The application of LIDAR to assessment of rooftop solar photovoltaic deployment potential in a municipal district unit. Sensors 12: 4534-4558.    
  • 13. Kucuksari S, Khaleghi AM, Hamidi M, et al. (2014) An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments. Appl Energy 113: 1601-1613.    
  • 14. La Gennusa M, Lascari G, Rizzo G, et al. (2011) A model for predicting the potential diffusion of solar energy systems in complex urban environments. Energy Policy 39: 5335-5343.
  • 15. Izquierdo S, Rodrigues M, Fueyo N (2008) A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol Energy 82: 929-939.    
  • 16. Africani P, Bitelli G, Lambertini A, et al. (2013) Integration of LIDAR data into a municipal GIS to study solar radiation. Int Arch Photogramm Remote Sens Spatial Inform Sci XL-1/W1: 1-6.    
  • 17. Byrne J, Taminiau J, Kurdgelashvili L, et al. (2014) A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew Sust Energ Rev 41: 830-844.
  • 18. Jo JH, Otanicar TP (2011) A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems. Renew Energ 36: 2992-3000.    
  • 19. Miranda RFC, Szklo A, Schaeffer R (2015) Technical-economic potential of PV systems on Brazilian rooftops. Renew Energ 75: 694-713.    
  • 20. Sun Y, Hof A, Wang R, et al. (2013) GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province. Energy Policy 58: 248-259.    
  • 21. Agugiaro G, Nex F, Remondino F, et al. (2012) Solar radiation estimation on building roofs and Web-Based solar cadastre. Int Arch Photogramm Remote Sens Spatial Inform Sci I-2: 177-182.    
  • 22. Calvert K, Pearce JM, Mabee WE (2013) Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity. Renew Sust Energ Rev 18: 416-429.    
  • 23. Hofierka J, Kaňuk J (2009) Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew Energ 34: 2206-2214.    
  • 24. Jochem A, Höfle B, Hollaus M, et al. (2009) Object detection in airborne LIDAR data for improved solar radiation modeling in urban areas. Int Arch Photogramm Remote Sens Spatial Inform Sci XXXVIII-3/W8: 1-6.
  • 25. Mainzer K, Fath K, McKenna R, et al. (2014) A high-resolution determination of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Sol Energy 105: 715-731.    
  • 26. Kodysh JB, Omitaomu OA, Bhaduri BL, et al. (2013) Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sust Cities Soc 8: 31-41.    
  • 27. Gooding J, Edwards H, Giesekam J, et al. (2013) Solar City Indicator: A methodology to predict city level PV installed capacity by combining physical capacity and socio-economic factors. Sol Energy 95: 325-335.    
  • 28. Araya-Muñoz D, Carvajal D, Sáez-Carreño A, et al. (2014) Assessing the solar potential of roofs in Valparaíso (Chile). Energ Buildings 69: 62-73.    
  • 29. Bergamasco L, Asinari P (2011) Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Further improvements by ortho-image analysis and application to Turin (Italy). Sol Energy 85: 2741-2756.    
  • 30. Jakubiec JA, Reinhart CF (2013) A method for predicting city-wide electricity gains from photovoltaic panels based on LIDAR and GIS data combined with hourly Daysim simulations. Sol Energy 93: 127-143.    
  • 31. Lukač N, Žlaus D, Seme S, et al. (2013) Rating of roofs' surfaces regarding their solar potential and suitability for PV systems, based on LIDAR data. Appl Energy 102: 803-812.    
  • 32. Lukač N, Seme S, Žlausa D, et al. (2014) Buildings roofs photovoltaic potential assessment based on LIDAR (Light Detection and Ranging) data. Energy 66: 598-609.    
  • 33. Redweik PM, Catita C, Brito MC (2011) 3D Local scale radiation model based on urban LIDAR data. Int Arch Photogramm Remote Sens Spatial Inform Sci XXXVIII-4/W19: 265-269.
  • 34. European Commission, Photovoltaic Geographical Information System (PVGIS). Available from: http://re.jrc.ec.europa.eu/pvgis. [Accessed on 4 February 2015].
  • 35. Borfecchia F, Caiaffa E, Pollino M, et al. (2014) Remote sensing and GIS in planning photovoltaic potential of urban areas. Eur J Remote Sens 47: 195-216.
  • 36. SoDa, Solar Energy Service for Professionals. Available from: http://www.soda-pro.com/es. [Accessed on 4 February 2015].
  • 37. Wiginton LK, Nguyen HT, Pearce JM (2010) Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput Environ Urban Syst 34: 345-357.    
  • 38. Gobierno de España, Ministerio de Fomento. Instituto Geográfico Nacional. Available from: http://www.ign.es/ign/main/index.do. [Accessed on 4 February 2015].
  • 39. Carneiro C, Morello E, Ratti C, et al. (2009) Solar radiation over the urban texture: LIDAR data and image processing techniques for environmental analysis at city scale. In: Heidelberg SB, editor. 3D Geo-Information Sci: 319-340.
  • 40. Agugiaro G, Remondino F, Stevanato G, et al. (2011) Estimation of solar radiation on building roofs in mountainous areas. Int Arch Photogramm Remote Sens Spatial Inform Sci XXXVIII-3/W22: 155-160.
  • 41. Xu Z, Coors V (2012) Combining system dynamics model, GIS and 3D visualization in sustainability assessment of urban residential development. Build Environ 47: 272-287.    
  • 42. Dorninger P, Pfeifer N (2008) A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8: 7323-7343.    
  • 43. Haala N, Kada M (2010) An update on automatic 3D building reconstruction. ISPRS J Photogramm 65: 570-580.    
  • 44. Xiao Y, Wang C, Xi XH et al. (2014) A comprehensive framework of building model reconstruction from airborne LIDAR data. IOP Conference Series: Earth and Environmental Science 17: 1-6.
  • 45. Jochem A, Höfle B, Rutzinger M, et al. (2009) Automatic roof plane detection and analysis in airborne LIDAR point clouds for solar potential assessment. Sensors 9: 5241-5262.    
  • 46. Fan H, Yao W, Fu Q (2014) Segmentation of sloped roofs from airborne LIDAR point clouds using ridge-based hierarchical decomposition. Sensors 6: 3284-3301.
  • 47. Awrangjeb M, Fraser CS (2014) Automatic segmentation of raw LIDAR data for extraction of building roofs. Remote Sens 6: 3716-3751.    
  • 48. Ludwig D, Lanig S, Klärle M (2009) Location analysis for solar panels by LIDAR-Data with Geoprocessing-SUN-AREA. Environmental Informatics and Industrial Environmental Protection: Concepts, Methods and Tools; Shaker Verlag: 83-89.
  • 49. Voegtle T, Steinle E, Tovari D (2005) Airborne laser scanning data for determination of suitable areas for photovoltaic. Int Arch Photogramm Remote Sens Spatial Inform Sci XXXVI-3/W19: 215-220.
  • 50. Sisaki J (2013) Knowledge-based modeling of buildings in dense urban areas by combining airborne LIDAR data and aerial images. Remote Sens 5: 5944-5968.    
  • 51. Wuming Zhang W, Wang H, Chen Y et al. (2014) 3D Building roof modeling by optimizing primitive’s parameters using constraints from LIDAR data and aerial imagery. Remote Sens 6: 8107-8133.    
  • 52. Tooke TR, Coops NC, Voogt JA, et al. (2011) Tree structure influences on rooftop-received solar radiation. Landsc Urban Plan 102: 73-81.    
  • 53. Alam N, Coors V, Zlatanova S, et al. (2012) Shadow effect on photovoltaic potentiality analysis using 3D city models. Int Arch Photogramm Remote Sens Spatial Inform Sci XXXIX-B8: 209-214.    
  • 54. Minghetti A, Africani P, Paselli E (2011) Bologna Solar City, a web application for the analysis or potential energy: From estimating solar radiation to the realization of the application. 17th Building Services, Mechanical and Building Industry Days Urban Energy Conference Debrecen, Hungary: 25-30.
  • 55. Hofierka J, Šúri M. The solar radiation model for Open source GIS: implementation and applications; September 2002; Trento, Italy: 1-19.
  • 56. Freitas S, Catita C, Redweik P, et al. (2015) Modelling solar potential in the urban environment: State-of-the-art review. Renew Sust Energy Rev 41: 915-931.    
  • 57. Šúri M, Huld TA, Dunlop ED (2005) PV-GIS: a web-based solar radiation database for the calculation of PV potential in Europe. InterJ Sust Energ 24: 55-67.    
  • 58. An overview of the Solar Radiation tools, ArcGIS Help Library, ESRI. Available from: http://resources.arcgis.com/en/help/main/10.2/index.html#//009z000000t4000000. [Accessed on 10 February 2015].
  • 59. Martín AM (2014) Modelo geográfico para la estimación del potencial fotovoltaico en tejados. Caso de estudio: Miraflores de la Sierra [MsC]. Madrid: Universidad Complutense. 82 p. Available from: http://eprints.ucm.es/25543/. [Accessed on 10 February 2015].
  • 60. Brito MC, Gomes N, Santos T, et al. (2012) Photovoltaic potential in a Lisbon suburb using LIDAR data. Sol Energy 86: 283-288.    
  • 61. Robinson D (2006) Urban morphology and indicators of radiation availability. Sol Energy 80: 1643-1648.    
  • 62. Perez R, Seals R, Michalsky J (1993) All-weather model for sky luminance distribution - Preliminary configuration and validation. Sol Energy 50 (3): 235-245.
  • 63. DAYSIM, Advanced Daylight Simulation Software. Available from: http://daysim.ning.com. [Accessed on 10 February 2015].
  • 64. Melo EG, Almeida MP, Zilles R, et al. (2013) Using a shading matrix to estimate the shading factor and the irradiation in a three-dimensional model of a receiving surface in an urban environment. Sol Energy 92: 15-25.    
  • 65. Redweik P, Catita C, Brito M (2013) Solar energy potential on roofs and facades in an urban landscape. Sol Energy 97: 332-341.    
  • 66. Erdélyi R, Wang Y, Guo W, et al. (2014) Three-dimensional SOlar RAdiation Model (SORAM) and its application to 3-D urban planning. Sol Energy 101: 63-73.
  • 67. Verso A, Martín A, Amador J et al. (2015) GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra. Sol Energy 117: 236-245.    
  • 68. Tooke TR, Coops NC, Christen A et al. (2012) Integrated irradiance modelling in the urban environment based on remotely sensed data. Sol Energy 86: 2923-2934.    
  • 69. Karteris M, Slini T, Papadopoulos AM (2013) Urban solar energy potential in Greece: A statistical calculation model of suitable built roof areas for photovoltaics. Energ Buildings 62: 459-468.    
  • 70. Chaves A, Bahill T (2010) Locating Sites for Photovoltaic Solar Panels: Pilot study uses DEM derived from LIDAR. ArcUser: The Magazine for Esri Sortware User 13: 24-27.
  • 71. Hillshade (3D Analyst), ArcGIS Help Library, ESRI. Available from: http://resources.arcgis.com/en/help/main/10.2/index.html#//00q900000036000000. [Accessed on 20 March 2015].
  • 72. Nguyen HT, Pearce JM (2012) Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale. Sol Energy 86: 1245-1260.
  • 73. Ordóñez J, E. Jadraque E, Alegre J et al. (2010) Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renew Sust Energ Rev 14: 2122-2130.    
  • 74. Hong T, Koo C, Park J, et al. (2014) A GIS (Geographic Information System) - based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system. Energy 65: 190-199.    
  • 75. Ko L, Wang JC, Chen CY et al. (2015) Evaluation of the development potential of rooftop solar photovoltaic in Taiwan. Renew Energ 76: 582-595.    
  • 76. Esclapés J, Ferreiro I, Piera J et al. (2014) A method to evaluate the adaptability of photovoltaic energy on urban façades. Sol Energy 105: 414-427.    
  • 77. Government of Spain, Development Ministry (2009) Regulation Technical Building. Basic Document HE.
  • 78. Dean J, Kandt A, Burman K, et al. Analysis of Web Based Solar Photovoltaic Mapping Tools. ASME 3rd International Conference on Energy Sustainability. San Francisco, California 2009 July 19-23.
  • 79. Kanters J, Wall M, Kjellsson E (2014) The Solar Map as a Knowledge Base for Solar Energy Use. Energy Procedia 48: 1597-1606.    
  • 80. Lisbon Solar Potential Map, LISBOA e-nova: Agéncia Municipal de Energia e ambiente. Available from: http://lisboaenova.org/cartasolarlisboa. [Accessed on 24 February 2015].
  • 81. Bologna Solar City, SIT Comune di Bologna. Available from: http://sitmappe.comune.bologna.it/BolognaSolarCity/. [Accessed on 24 February 2015].
  • 82. Cadastre Solaire de Paris. Available from: http://capgeo.sig.paris.fr/Apps/CadastreSolaire/. [Accessed on 4 February 2015].
  • 83. Klärle M, Lanig S, Meik K (2011) Web-based solar roof cadastre goes international. GEOconnexion Int Mag 10: 30-33.
  • 84. Solardachpotenzial Osnabrück. Available from: http://geo.osnabrueck.de/solar/. [Accessed on 24 February 2015].
  • 85. Dachflächeneignung für Solaranlagen, Stadt Gelsenkirchen. Available from: http://geo.gkd-el.de/website/solar/viewer.htm. [Accessed on 24 February 2015].
  • 86. Braunschweig Solar. Available from: http://braunschweig.publicsolar.de/frames/. [Accessed on 24 February 2015].
  • 87. Bristol Solar Map. Available from: http://www.bristol.gov.uk/page/environment/solar-energy. [Accessed on 24 February 2015].
  • 88. Krüger A, Kolbe TH (2012) Building analysis for urban energy planning using key indicators on virtual 3D city model - The energy atlas of Berlin. Int Arch Photogramm Remote Sens Spatial Inform Sci XXXIX-B2: 145-150.
  • 89. Solaratlas Berlin, Berlin Business Location Center. Available from: http://www.businesslocationcenter.de/wab/maps/solaratlas/. [Accessed on 24 February 2015].
  • 90. San Diego Solar Map. Available from: http://sd.solarmap.org/. [Accessed on 24 February 2015].
  • 91. LA County Solar Map and Green Planning Tool. Available from: http://solarmap.lacounty.gov/. [Accessed on 24 February 2015].
  • 92. New York City Solar Map. Available from: http://www.nycsolarmap.com/. [Accessed on 24 February 2015].
  • 93. San Francisco energy Map. Available from: http://sfenergymap.org/. [Accessed on 24 February 2015].
  • 94. Mapwell. Available from: http://www.mapdwell.com. [Accessed on 24 February 2015].
  • 95. Zonnescan Provincie Noord-Brabant. Available from: http://www.zonnescanbrabant.nl. [Accessed on 24 February 2015].
  • 96. SolarDachAtlas. Available from: http://www.solare-stadt.de/zgb/SolarDachAtlas. [Accessed on 24 February 2015].
  • 97. Zonatlas. Available from: http://www.zonatlas.nl/home. [Accessed on 24 February 2015].
  • 98. Denholm P, Margolis RM (2008) Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy 36: 3531-3543.
  • 99. Choi Y, Rayl J, Tammineedi C, et al. (2011) PV Analyst: Coupling ArcGIS with TRNSYS to assess distributed photovoltaic potential in urban areas. Sol Energy 85: 2924-2939.
  • 100. Resch B, Sagl G, Törnros T, et al. (2014) GIS-Based planning and modeling for renewable energy: Challenges and future research avenues. ISPRS International Journal of Geo-Information 3: 662-692.
  • 101. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energ Buildings 40: 394-398.    
  • 102. Liang J, Gong J, Zhou J, et al. (2015) An open-source 3D solar radiation model integrated with a 3D Geographic Information System. Environ Modell Softw 64: 94-101.    

 

This article has been cited by

  • 1. Jordan M. Malof, Kyle Bradbury, Leslie M. Collins, Richard G. Newell, Automatic detection of solar photovoltaic arrays in high resolution aerial imagery, Applied Energy, 2016, 183, 229, 10.1016/j.apenergy.2016.08.191
  • 2. Michal Fogl, Vítězslav Moudrý, Influence of vegetation canopies on solar potential in urban environments, Applied Geography, 2016, 66, 73, 10.1016/j.apgeog.2015.11.011
  • 3. Yan Huang, Zuoqi Chen, Bin Wu, Liang Chen, Weiqing Mao, Feng Zhao, Jianping Wu, Junhan Wu, Bailang Yu, Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data, Remote Sensing, 2015, 7, 12, 17212, 10.3390/rs71215877
  • 4. John Byrne, Job Taminiau, Kyung Nam Kim, Joohee Lee, Jeongseok Seo, Multivariate analysis of solar city economics: impact of energy prices, policy, finance, and cost on urban photovoltaic power plant implementation, Wiley Interdisciplinary Reviews: Energy and Environment, 2017, e241, 10.1002/wene.241
  • 5. Bharat Lohani, Sarvesh Kumar Singh, Devendra Choudhary, Balasubramanian Nagarajan, A new approach to determine solar potential using terrestrial images, Remote Sensing Letters, 2018, 9, 7, 636, 10.1080/2150704X.2018.1452061
  • 6. E.A. Aboushal, Applying GIS Technology for optimum selection of Photovoltaic Panels “Spatially at Defined Urban Area in Alexandria, Egypt”, Alexandria Engineering Journal, 2018, 10.1016/j.aej.2018.11.005
  • 7. John A. Byrne, Job Taminiau, Kyung N. Kim, Joohee Lee, Jeongseok Seo, , Advances in Energy Systems, 2019, 491, 10.1002/9781119508311.ch29
  • 8. Erika Saretta, Paola Caputo, Francesco Frontini, A review study about energy renovation of building facades with BIPV in urban environment, Sustainable Cities and Society, 2019, 44, 343, 10.1016/j.scs.2018.10.002
  • 9. Rita Machete, Ana Paula Falcão, M. Glória Gomes, A. Moret Rodrigues, The use of 3D GIS to analyse the influence of urban context on buildings’ solar energy potential, Energy and Buildings, 2018, 177, 290, 10.1016/j.enbuild.2018.07.064

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Javier Domínguez, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved