Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

SMYD proteins in immunity: dawning of a new era

1 Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
2 Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
# These authors contributed equally to this work.

Special Issues: Molecular Mechanism of Inflammation

  Figure/Table
  Supplementary
  Article Metrics

References

1. Gottlieb PD, Pierce SA, Sims RJ, et al. (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31: 25–32.

2. Hamamoto R, Furukawa Y, Morita M, et al. (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6: 731–740.    

3. Donlin LT, Andresen C, Just S, et al. (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26: 114–119.    

4. Proserpio V, Fittipaldi R, Ryall JG, et al. (2013) The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev 27: 1299–1312.    

5. Fujii T, Tsunesumi S, Yamaguchi K, et al. (2011) Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 6: e23491.    

6. Thompson EC, Travers AA (2008) A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in development. PLoS One 3: e3008.    

7. Spellmon N, Holcomb J, Trescott L, et al. (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16: 1406–1428.    

8. Sakamoto LH, Andrade RV, Felipe MS, et al. (2014) SMYD2 is highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad prognostic factor. Leuk Res 38: 496–502.    

9. Komatsu S, Imoto I, Tsuda H, et al. (2009) Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 30: 1139–1146.    

10. Hu L, Zhu YT, Qi C, et al. (2009) Identification of Smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res 69: 4067–4072.

11. Stender JD, Pascual G, Liu W, et al. (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol cell 48: 28–38.    

12. Xu G, Liu G, Xiong S, et al. (2015) The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production. J Biol chem 290: 5414–5423.    

13. Nagata DE, Ting HA, Cavassani KA, et al. (2015) Epigenetic control of Foxp3 by SMYD3 H3K4 histone methyltransferase controls iTreg development and regulates pathogenic T-cell responses during pulmonary viral infection. Mucosal immunol8: 1131–1143.

14. Hwang I, Gottlieb PD (1995) Bop: a new T-cell-restricted gene located upstream of and opposite to mouse CD8b. Immunogenetics 42: 353–361.

15. Hussain SP, Hofseth LJ, Harris CC. (2003) Radical causes of cancer. Nat Rev Cancer 3: 276–285.    

16. Esquivel-Velazquez M, Ostoa-Saloma P, Palacios-Arreola MI, et al. (2015) The role of cytokines in breast cancer development and progression. J Interf Cytok Res 35: 1–16.    

17. Haabeth OA, Lorvik KB, Hammarstrom C, et al. (2011) Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun 2: 385–396.    

18. Miyashita M, Sasano H, Tamaki K, et al. (2015) Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res BCR 17: 11–13.    

19. Borlak J, Thum T (2003) Hallmarks of ion channel gene expression in end-stage heart failure. Faseb J 17: 1592–1608.    

20. Platzbecker U, Klingel K, Thiede C, et al. (2001) Acute heart failure after allogeneic blood stem cell transplantation due to massive myocardial infiltration by cytotoxic T cells of donor origin. Bone Marrow Transpl 27: 107–109.    

21. Levick SP, Goldspink PH (2014) Could interferon-gamma be a therapeutic target for treating heart failure? Heart Fail Rev 19: 227–236.    

22. Streit WJ, Mrak RE, Griffin WS. (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 1:1–4.    

23. Koscielny G, Yaikhom G, Iyer V, et al. (2014) The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 42D: 802–809.

24. Mazur PK, Reynoird N, Khatri P, et al. (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510: 283–287.    

25. Zhao Q, Lee FS (1999) Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-kappaB through IkappaB kinase-alpha and IkappaB kinase-beta. J Biol Chem 274: 8355–8358.    

26. Huang J, Perez-Burgos L, Placek BJ, et al. (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444: 629–632.    

27. Saddic LA, West LE, Aslanian A, et al. (2010) Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285: 37733–37740.    

28. Santhanam U, Ray A, Sehgal PB. (1991) Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. P Natl Acad Sci USA 88: 7605–7609.    

Copyright Info: © 2016, Zhe Yang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved