Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

SMYD proteins in immunity: dawning of a new era

1 Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
2 Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
# These authors contributed equally to this work.

Special Issues: Molecular Mechanism of Inflammation

  Figure/Table
  Supplementary
  Article Metrics

Citation: Maysaa Doughan, Nicholas Spellmon, Chunying Li, Zhe Yang. SMYD proteins in immunity: dawning of a new era. AIMS Biophysics, 2016, 3(4): 450-455. doi: 10.3934/biophy.2016.4.450

References

  • 1. Gottlieb PD, Pierce SA, Sims RJ, et al. (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31: 25–32.
  • 2. Hamamoto R, Furukawa Y, Morita M, et al. (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6: 731–740.    
  • 3. Donlin LT, Andresen C, Just S, et al. (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26: 114–119.    
  • 4. Proserpio V, Fittipaldi R, Ryall JG, et al. (2013) The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev 27: 1299–1312.    
  • 5. Fujii T, Tsunesumi S, Yamaguchi K, et al. (2011) Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 6: e23491.    
  • 6. Thompson EC, Travers AA (2008) A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in development. PLoS One 3: e3008.    
  • 7. Spellmon N, Holcomb J, Trescott L, et al. (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16: 1406–1428.    
  • 8. Sakamoto LH, Andrade RV, Felipe MS, et al. (2014) SMYD2 is highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad prognostic factor. Leuk Res 38: 496–502.    
  • 9. Komatsu S, Imoto I, Tsuda H, et al. (2009) Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 30: 1139–1146.    
  • 10. Hu L, Zhu YT, Qi C, et al. (2009) Identification of Smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res 69: 4067–4072.
  • 11. Stender JD, Pascual G, Liu W, et al. (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol cell 48: 28–38.    
  • 12. Xu G, Liu G, Xiong S, et al. (2015) The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production. J Biol chem 290: 5414–5423.    
  • 13. Nagata DE, Ting HA, Cavassani KA, et al. (2015) Epigenetic control of Foxp3 by SMYD3 H3K4 histone methyltransferase controls iTreg development and regulates pathogenic T-cell responses during pulmonary viral infection. Mucosal immunol8: 1131–1143.
  • 14. Hwang I, Gottlieb PD (1995) Bop: a new T-cell-restricted gene located upstream of and opposite to mouse CD8b. Immunogenetics 42: 353–361.
  • 15. Hussain SP, Hofseth LJ, Harris CC. (2003) Radical causes of cancer. Nat Rev Cancer 3: 276–285.    
  • 16. Esquivel-Velazquez M, Ostoa-Saloma P, Palacios-Arreola MI, et al. (2015) The role of cytokines in breast cancer development and progression. J Interf Cytok Res 35: 1–16.    
  • 17. Haabeth OA, Lorvik KB, Hammarstrom C, et al. (2011) Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun 2: 385–396.    
  • 18. Miyashita M, Sasano H, Tamaki K, et al. (2015) Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res BCR 17: 11–13.    
  • 19. Borlak J, Thum T (2003) Hallmarks of ion channel gene expression in end-stage heart failure. Faseb J 17: 1592–1608.    
  • 20. Platzbecker U, Klingel K, Thiede C, et al. (2001) Acute heart failure after allogeneic blood stem cell transplantation due to massive myocardial infiltration by cytotoxic T cells of donor origin. Bone Marrow Transpl 27: 107–109.    
  • 21. Levick SP, Goldspink PH (2014) Could interferon-gamma be a therapeutic target for treating heart failure? Heart Fail Rev 19: 227–236.    
  • 22. Streit WJ, Mrak RE, Griffin WS. (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 1:1–4.    
  • 23. Koscielny G, Yaikhom G, Iyer V, et al. (2014) The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 42D: 802–809.
  • 24. Mazur PK, Reynoird N, Khatri P, et al. (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510: 283–287.    
  • 25. Zhao Q, Lee FS (1999) Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-kappaB through IkappaB kinase-alpha and IkappaB kinase-beta. J Biol Chem 274: 8355–8358.    
  • 26. Huang J, Perez-Burgos L, Placek BJ, et al. (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444: 629–632.    
  • 27. Saddic LA, West LE, Aslanian A, et al. (2010) Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285: 37733–37740.    
  • 28. Santhanam U, Ray A, Sehgal PB. (1991) Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. P Natl Acad Sci USA 88: 7605–7609.    

 

This article has been cited by

  • 1. Nicholas Spellmon, Xiaonan Sun, Wen Xue, Joshua Holcomb, Srinivas Chakravarthy, Weifeng Shang, Brian Edwards, Nualpun Sirinupong, Chunying Li, Zhe Yang, New open conformation of SMYD3 implicates conformational selection and allostery, AIMS Biophysics, 2016, 4, 1, 1, 10.3934/biophy.2017.1.1
  • 2. Hui Wang, Zhixin Chai, Dan Hu, Qiumei Ji, Jinwei Xin, Chengfu Zhang, Jincheng Zhong, A global analysis of CNVs in diverse yak populations using whole-genome resequencing, BMC Genomics, 2019, 20, 1, 10.1186/s12864-019-5451-5
  • 3. Dandan Wu, Yang Chen, Qiming Chen, Guoming Wang, Xiaofeng Xu, A. Peng, Jin Hao, Jinguang He, Li Huang, Jiewen Dai, Clinical presentation and genetic profiles of Chinese patients with velocardiofacial syndrome in a large referral centre, Journal of Genetics, 2019, 98, 2, 10.1007/s12041-019-1090-5

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Zhe Yang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved