Review Special Issues

Into the chromatin world: Role of nuclear architecture in epigenome regulation

  • Received: 27 July 2015 Accepted: 25 October 2015 Published: 29 October 2015
  • Epigenome modifications are established early in development and differentiation and generate distinct levels of chromatin complexity. The specific position of chromosomes and the compaction state of chromatin are both typical features that make it possible to distinguish between repressive and permissive environment for gene expression. In this review we describe the distinct levels of epigenome structures, emphasizing the role of nuclear architecture in the control of gene expression. Recent novel insights have increasingly demonstrated that the nuclear environment can influence nuclear processes such as gene expression and DNA repair. These findings have revealed a further important aspect of the chromatin modifications, suggesting that a proper crosstalk between chromatin and nuclear components, such as lamins or nuclear pores, is required to ensure the correct functioning of the nucleus and that this assumes a crucial role in many pathologies and diseases. Knowledge regarding the molecular mechanisms behind most of these developmental and disease-related defects remains incomplete; the influence of the nuclear architecture on chromatin function may provide a new perspective for understanding these phenotypes.

    Citation: Andrea Bianchi, Chiara Lanzuolo. Into the chromatin world: Role of nuclear architecture in epigenome regulation[J]. AIMS Biophysics, 2015, 2(4): 585-612. doi: 10.3934/biophy.2015.4.585

    Related Papers:

  • Epigenome modifications are established early in development and differentiation and generate distinct levels of chromatin complexity. The specific position of chromosomes and the compaction state of chromatin are both typical features that make it possible to distinguish between repressive and permissive environment for gene expression. In this review we describe the distinct levels of epigenome structures, emphasizing the role of nuclear architecture in the control of gene expression. Recent novel insights have increasingly demonstrated that the nuclear environment can influence nuclear processes such as gene expression and DNA repair. These findings have revealed a further important aspect of the chromatin modifications, suggesting that a proper crosstalk between chromatin and nuclear components, such as lamins or nuclear pores, is required to ensure the correct functioning of the nucleus and that this assumes a crucial role in many pathologies and diseases. Knowledge regarding the molecular mechanisms behind most of these developmental and disease-related defects remains incomplete; the influence of the nuclear architecture on chromatin function may provide a new perspective for understanding these phenotypes.
    [1] Luger K, Mader AW, Richmond RK, et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260.
    [2] Travers A (1999) The location of the linker histone on the nucleosome. Trends Biochem Sci 24: 4-7. doi: 10.1016/S0968-0004(98)01339-5
    [3] Goytisolo FA, Gerchman SE, Yu X, et al. (1996) Identification of two DNA-binding sites on the globular domain of histone H5. Embo J 15: 3421-3429.
    [4] Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83: 403-427. doi: 10.1083/jcb.83.2.403
    [5] Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14: 17-25. doi: 10.1007/s10577-005-1024-3
    [6] Fan Y, Nikitina T, Morin-Kensicki EM, et al. (2003) H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 23: 4559-4572. doi: 10.1128/MCB.23.13.4559-4572.2003
    [7] Zacharias H (1995) Emil Heitz (1892-1965): chloroplasts, heterochromatin, and polytene chromosomes. Genetics 141: 7-14.
    [8] Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115: 110-122. doi: 10.1007/s00412-006-0052-x
    [9] Gilbert N, Boyle S, Fiegler H, et al. (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118: 555-566. doi: 10.1016/j.cell.2004.08.011
    [10] Gorisch SM, Wachsmuth M, Toth KF, et al. (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118: 5825-5834. doi: 10.1242/jcs.02689
    [11] Vakoc CR, Mandat SA, Olenchock BA, et al. (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19: 381-391. doi: 10.1016/j.molcel.2005.06.011
    [12] Gilbert N, Allan J (2001) Distinctive higher-order chromatin structure at mammalian centromeres. Proc Natl Acad Sci U S A 98: 11949-11954. doi: 10.1073/pnas.211322798
    [13] Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8: 299-309. doi: 10.1038/nrg2047
    [14] Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272-285.
    [15] Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693-705. doi: 10.1016/j.cell.2007.02.005
    [16] Bernstein BE, Kamal M, Lindblad-Toh K, et al. (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169-181. doi: 10.1016/j.cell.2005.01.001
    [17] Allshire RC, Ekwall K (2015) Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7.
    [18] Nakamura T, Mori T, Tada S, et al. (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119-1128. doi: 10.1016/S1097-2765(02)00740-2
    [19] Milne TA, Briggs SD, Brock HW, et al. (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10: 1107-1117. doi: 10.1016/S1097-2765(02)00741-4
    [20] Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28: 1-13. doi: 10.1016/j.molcel.2007.09.011
    [21] Rea S, Eisenhaber F, O'Carroll D, et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593-599. doi: 10.1038/35020506
    [22] Lachner M, O'Carroll D, Rea S, et al. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116-120. doi: 10.1038/35065132
    [23] Cowell IG, Aucott R, Mahadevaiah SK, et al. (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111: 22-36. doi: 10.1007/s00412-002-0182-8
    [24] Fanti L, Berloco M, Piacentini L, et al. (2003) Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117: 135-147. doi: 10.1023/A:1022971407290
    [25] Nielsen SJ, Schneider R, Bauer UM, et al. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561-565. doi: 10.1038/35087620
    [26] Lanzuolo C, Orlando V (2012) Memories from the Polycomb Group Proteins. Annu Rev Genet.
    [27] Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10: 697-708. doi: 10.1038/nrn2731
    [28] Boyer LA, Plath K, Zeitlinger J, et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349-353. doi: 10.1038/nature04733
    [29] Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7: 299-313. doi: 10.1016/j.stem.2010.08.002
    [30] Zhou W, Zhu P, Wang J, et al. (2008) Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29: 69-80. doi: 10.1016/j.molcel.2007.11.002
    [31] van Kruijsbergen I, Hontelez S, Veenstra GJ (2015) Recruiting polycomb to chromatin. Int J Biochem Cell Biol.
    [32] Blackledge NP, Farcas AM, Kondo T, et al. (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157: 1445-1459. doi: 10.1016/j.cell.2014.05.004
    [33] Ku M, Koche RP, Rheinbay E, et al. (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4: e1000242. doi: 10.1371/journal.pgen.1000242
    [34] Gao Z, Zhang J, Bonasio R, et al. (2012) PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes. Mol Cell 45: 344-356. doi: 10.1016/j.molcel.2012.01.002
    [35] Cooper S, Dienstbier M, Hassan R, et al. (2014) Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 7: 1456-1470. doi: 10.1016/j.celrep.2014.04.012
    [36] Kalb R, Latwiel S, Baymaz HI, et al. (2014) Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21: 569-571. doi: 10.1038/nsmb.2833
    [37] Nazer E, Lei EP (2014) Modulation of chromatin modifying complexes by noncoding RNAs in trans. Curr Opin Genet Dev 25: 68-73. doi: 10.1016/j.gde.2013.11.019
    [38] Jacinto FV, Benner C, Hetzer MW (2015) The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev 29: 1224-1238. doi: 10.1101/gad.260919.115
    [39] Mozzetta C, Pontis J, Fritsch L, et al. (2014) The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 53: 277-289. doi: 10.1016/j.molcel.2013.12.005
    [40] Sarma K, Cifuentes-Rojas C, Ergun A, et al. (2014) ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 159: 869-883. doi: 10.1016/j.cell.2014.10.019
    [41] Wu S, Shi Y, Mulligan P, et al. (2007) A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat Struct Mol Biol 14: 1165-1172. doi: 10.1038/nsmb1332
    [42] Margueron R, Justin N, Ohno K, et al. (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461: 762-767. doi: 10.1038/nature08398
    [43] Xu C, Bian C, Yang W, et al. (2010) Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci U S A 107: 19266-19271. doi: 10.1073/pnas.1008937107
    [44] Posfai E, Kunzmann R, Brochard V, et al. (2012) Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev.
    [45] Surface LE, Thornton SR, Boyer LA (2010) Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7: 288-298. doi: 10.1016/j.stem.2010.08.004
    [46] Bracken AP, Dietrich N, Pasini D, et al. (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123-1136. doi: 10.1101/gad.381706
    [47] Asp P, Blum R, Vethantham V, et al. (2011) Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A 108: E149-158. doi: 10.1073/pnas.1102223108
    [48] Caretti G, Di Padova M, Micales B, et al. (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18: 2627-2638. doi: 10.1101/gad.1241904
    [49] Juan AH, Derfoul A, Feng X, et al. (2011) Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev 25: 789-794. doi: 10.1101/gad.2027911
    [50] Juan AH, Kumar RM, Marx JG, et al. (2009) Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36: 61-74. doi: 10.1016/j.molcel.2009.08.008
    [51] Palacios D, Mozzetta C, Consalvi S, et al. (2010) TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7: 455-469. doi: 10.1016/j.stem.2010.08.013
    [52] Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16: 245-257.
    [53] Bantignies F, Cavalli G (2011) Polycomb group proteins: repression in 3D. Trends Genet 27: 454-464. doi: 10.1016/j.tig.2011.06.008
    [54] Dekker J, Rippe K, Dekker M, et al. (2002) Capturing chromosome conformation. Science 295: 1306-1311. doi: 10.1126/science.1067799
    [55] de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26: 11-24. doi: 10.1101/gad.179804.111
    [56] Simonis M, Klous P, Splinter E, et al. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38: 1348-1354. doi: 10.1038/ng1896
    [57] Lieberman-Aiden E, van Berkum NL, Williams L, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289-293. doi: 10.1126/science.1181369
    [58] Bantignies F, Roure V, Comet I, et al. (2011) Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell 144: 214-26. doi: 10.1016/j.cell.2010.12.026
    [59] Lanzuolo C, Roure V, Dekker J, et al. (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9: 1167-1174. doi: 10.1038/ncb1637
    [60] Lo Sardo F, Lanzuolo C, Comoglio F, et al. (2013) PcG-Mediated Higher-Order Chromatin Structures Modulate Replication Programs at the Drosophila BX-C. PLoS Genet 9: e1003283. doi: 10.1371/journal.pgen.1003283
    [61] Tolhuis B, Blom M, Kerkhoven RM, et al. (2011) Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 7: e1001343. doi: 10.1371/journal.pgen.1001343
    [62] Lanzuolo C, Lo Sardo F, Diamantini A, et al. (2011) PcG Complexes Set the Stage for Epigenetic Inheritance of Gene Silencing in Early S Phase before Replication. PLoS Genet 7: e1002370. doi: 10.1371/journal.pgen.1002370
    [63] Schoenfelder S, Sugar R, Dimond A, et al. (2015) Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 47: 1179-1186. doi: 10.1038/ng.3393
    [64] Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134: 223-232. doi: 10.1242/dev.02723
    [65] Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14: 390-403. doi: 10.1038/nrg3454
    [66] Dixon JR, Selvaraj S, Yue F, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-380. doi: 10.1038/nature11082
    [67] Hou C, Li L, Qin ZS, et al. (2012) Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell 48: 471-484. doi: 10.1016/j.molcel.2012.08.031
    [68] Andrey G, Montavon T, Mascrez B, et al. (2013) A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340: 1234167. doi: 10.1126/science.1234167
    [69] Cremer T, Cremer M, Dietzel S, et al. (2006) Chromosome territories--a functional nuclear landscape. Curr Opin Cell Biol 18: 307-316. doi: 10.1016/
    [70] Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5: R44. doi: 10.1186/gb-2004-5-7-r44
    [71] Tanabe H, Muller S, Neusser M, et al. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99: 4424-4429. doi: 10.1073/pnas.072618599
    [72] Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445: 379-781. doi: 10.1038/445379a
    [73] Cremer T, Kreth G, Koester H, et al. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10: 179-212.
    [74] Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21: 3027-3043. doi: 10.1101/gad.1604607
    [75] Cremer M, von Hase J, Volm T, et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541-567. doi: 10.1023/A:1012495201697
    [76] Rajapakse I, Groudine M (2011) On emerging nuclear order. J Cell Biol 192: 711-721. doi: 10.1083/jcb.201010129
    [77] Albiez H, Cremer M, Tiberi C, et al. (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14: 707-733. doi: 10.1007/s10577-006-1086-x
    [78] Mahy NL, Perry PE, Gilchrist S, et al. (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157: 579-589. doi: 10.1083/jcb.200111071
    [79] Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4: e138. doi: 10.1371/journal.pbio.0040138
    [80] Meister P, Taddei A (2013) Building silent compartments at the nuclear periphery: a recurrent theme. Curr Opin Genet Dev 23: 96-103. doi: 10.1016/j.gde.2012.12.001
    [81] Deniaud E, Bickmore WA (2009) Transcription and the nuclear periphery: edge of darkness? Curr Opin Genet Dev 19: 187-191. doi: 10.1016/j.gde.2009.01.005
    [82] Andrulis ED, Neiman AM, Zappulla DC, et al. (1998) Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394: 592-595. doi: 10.1038/29100
    [83] Finlan LE, Sproul D, Thomson I, et al. (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4: e1000039. doi: 10.1371/journal.pgen.1000039
    [84] Towbin BD, Gonzalez-Aguilera C, Sack R, et al. (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150: 934-947. doi: 10.1016/j.cell.2012.06.051
    [85] Steglich B, Sazer S, Ekwall K (2013) Transcriptional regulation at the yeast nuclear envelope. Nucleus 4: 379-389. doi: 10.4161/nucl.26394
    [86] Dundr M (2012) Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol 24: 415-422. doi: 10.1016/
    [87] Zhu L, Brangwynne CP (2015) Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 34: 23-30. doi: 10.1016/
    [88] Cmarko D, Verschure PJ, Otte AP, et al. (2003) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116: 335-343. doi: 10.1242/jcs.00225
    [89] Isono K, Endo TA, Ku M, et al. (2013) SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 26: 565-577. doi: 10.1016/j.devcel.2013.08.016
    [90] Gonzalez I, Mateos-Langerak J, Thomas A, et al. (2014) Identification of regulators of the three-dimensional polycomb organization by a microscopy-based genome-wide RNAi screen. Mol Cell 54: 485-499. doi: 10.1016/j.molcel.2014.03.004
    [91] Vandenbunder B, Fourre N, Leray A, et al. (2014) PRC1 components exhibit different binding kinetics in Polycomb bodies. Biol Cell 106: 111-125. doi: 10.1111/boc.201300077
    [92] Cheutin T, Cavalli G (2012) Progressive Polycomb Assembly on H3K27me3 Compartments Generates Polycomb Bodies with Developmentally Regulated Motion. PLoS Genet 8: e1002465. doi: 10.1371/journal.pgen.1002465
    [93] Ren X, Vincenz C, Kerppola TK (2008) Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation. Mol Cell Biol 28: 2884-2895. doi: 10.1128/MCB.00949-07
    [94] Gao Z, Lee P, Stafford JM, et al. (2014) An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516: 349-354. doi: 10.1038/nature13921
    [95] Mousavi K, Zare H, Wang AH, et al. (2011) Polycomb Protein Ezh1 Promotes RNA Polymerase II Elongation. Mol Cell.
    [96] Goldman RD, Gruenbaum Y, Moir RD, et al. (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16: 533-547. doi: 10.1101/gad.960502
    [97] Goldman AE, Maul G, Steinert PM, et al. (1986) Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins. Proc Natl Acad Sci U S A 83: 3839-3843. doi: 10.1073/pnas.83.11.3839
    [98] McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319: 463-468. doi: 10.1038/319463a0
    [99] Rober RA, Sauter H, Weber K, et al. (1990) Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells. J Cell Sci 95 ( Pt 4): 587-598.
    [100] Solovei I, Wang AS, Thanisch K, et al. (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152: 584-598. doi: 10.1016/j.cell.2013.01.009
    [101] Guilly MN, Bensussan A, Bourge JF, et al. (1987) A human T lymphoblastic cell line lacks lamins A and C. Embo J 6: 3795-3799.
    [102] Stewart C, Burke B (1987) Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51: 383-392. doi: 10.1016/0092-8674(87)90634-9
    [103] Kolb T, Maass K, Hergt M, et al. (2011) Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells. Nucleus 2: 425-433. doi: 10.4161/nucl.2.5.17765
    [104] Shimi T, Pfleghaar K, Kojima S, et al. (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22: 3409-3421. doi: 10.1101/gad.1735208
    [105] Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R (2013) Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 70: 2713-2741. doi: 10.1007/s00018-012-1190-3
    [106] Collas P, Lund EG, Oldenburg AR (2014) Closing the (nuclear) envelope on the genome: How nuclear lamins interact with promoters and modulate gene expression. Bioessays 36: 75-83. doi: 10.1002/bies.201300138
    [107] Meuleman W, Peric-Hupkes D, Kind J, et al. (2013) Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23: 270-280. doi: 10.1101/gr.141028.112
    [108] Kind J, Pagie L, Ortabozkoyun H, et al. (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153: 178-192. doi: 10.1016/j.cell.2013.02.028
    [109] Kind J, van Steensel B (2010) Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22: 320-325. doi: 10.1016/
    [110] Lund E, Oldenburg A, Delbarre E, et al. (2013) Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res.
    [111] Pickersgill H, Kalverda B, de Wit E, et al. (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38: 1005-1014. doi: 10.1038/ng1852
    [112] Guelen L, Pagie L, Brasset E, et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453: 948-951. doi: 10.1038/nature06947
    [113] Kind J, Pagie L, de Vries SS, et al. (2015) Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell 163: 134-147. doi: 10.1016/j.cell.2015.08.040
    [114] Mattout A, Pike BL, Towbin BD, et al. (2011) An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr Biol 21: 1603-1614.
    [115] Peric-Hupkes D, Meuleman W, Pagie L, et al. (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38: 603-613. doi: 10.1016/j.molcel.2010.03.016
    [116] Zaidi SK, Young DW, Montecino MA, et al. (2010) Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 11: 583-589. doi: 10.1038/nrg2827
    [117] Kind J, van Steensel B (2014) Stochastic genome-nuclear lamina interactions: Modulating roles of Lamin A and BAF. Nucleus 5: 124-130. doi: 10.4161/nucl.28825
    [118] Amendola M, van Steensel B (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells. EMBO Rep 16: 610-617. doi: 10.15252/embr.201439789
    [119] Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29: 225-237. doi: 10.1101/gad.255968.114
    [120] Haque F, Lloyd DJ, Smallwood DT, et al. (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26: 3738-3751. doi: 10.1128/MCB.26.10.3738-3751.2006
    [121] Gruenbaum Y, Foisner R (2015) Lamins: Nuclear Intermediate Filament Proteins with Fundamental Functions in Nuclear Mechanics and Genome Regulation. Annu Rev Biochem.
    [122] Swift J, Ivanovska IL, Buxboim A, et al. (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341: 1240104. doi: 10.1126/science.1240104
    [123] Padiath QS, Saigoh K, Schiffmann R, et al. (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38: 1114-1123. doi: 10.1038/ng1872
    [124] Hegele RA, Cao H, Liu DM, et al. (2006) Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet 79: 383-389. doi: 10.1086/505885
    [125] Harborth J, Elbashir SM, Bechert K, et al. (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114: 4557-4565.
    [126] Zaremba-Czogalla M, Dubinska-Magiera M, Rzepecki R (2011) Laminopathies: the molecular background of the disease and the prospects for its treatment. Cell Mol Biol Lett 16: 114-148.
    [127] Broers JL, Peeters EA, Kuijpers HJ, et al. (2004) Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13: 2567-2580. doi: 10.1093/hmg/ddh295
    [128] Sullivan T, Escalante-Alcalde D, Bhatt H, et al. (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147: 913-920. doi: 10.1083/jcb.147.5.913
    [129] Hernandez L, Roux KJ, Wong ES, et al. (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19: 413-425. doi: 10.1016/j.devcel.2010.08.013
    [130] Sinha JK, Ghosh S, Raghunath M (2014) Progeria: a rare genetic premature ageing disorder. Indian J Med Res 139: 667-674.
    [131] McCord RP, Nazario-Toole A, Zhang H, et al. (2013) Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 23: 260-269. doi: 10.1101/gr.138032.112
    [132] Shumaker DK, Dechat T, Kohlmaier A, et al. (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103: 8703-8708. doi: 10.1073/pnas.0602569103
    [133] Landires I, Pascale JM, Motta J (2007) The position of the mutation within the LMNA gene determines the type and extent of tissue involvement in laminopathies. Clin Genet 71: 592-593; author reply 594-596. doi: 10.1111/j.1399-0004.2007.00772.x
    [134] Scharner J, Gnocchi VF, Ellis JA, et al. (2010) Genotype-phenotype correlations in laminopathies: how does fate translate? Biochem Soc Trans 38: 257-262. doi: 10.1042/BST0380257
    [135] Sewry CA, Brown SC, Mercuri E, et al. (2001) Skeletal muscle pathology in autosomal dominant Emery-Dreifuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol 27: 281-290. doi: 10.1046/j.0305-1846.2001.00323.x
    [136] Cesarini E, Mozzetta C, Marullo F, et al. (2015) Lamin A/C sustains PcG proteins architecture maintaining transcriptional repression at target genes. J Cell Biol.
    [137] Ptak C, Aitchison JD, Wozniak RW (2014) The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 28: 46-53. doi: 10.1016/
    [138] Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82: 8527-8529. doi: 10.1073/pnas.82.24.8527
    [139] Cabal GG, Genovesio A, Rodriguez-Navarro S, et al. (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441: 770-773. doi: 10.1038/nature04752
    [140] Taddei A, Van Houwe G, Hediger F, et al. (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441: 774-778. doi: 10.1038/nature04845
    [141] Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23: 2610-2624. doi: 10.1101/gad.1823209
    [142] Green EM, Jiang Y, Joyner R, et al. (2012) A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell 23: 1367-1375. doi: 10.1091/mbc.E11-06-0547
    [143] Yoshida T, Shimada K, Oma Y, et al. (2010) Actin-related protein Arp6 influences H2A.Z-dependent and -independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet 6: e1000910.
    [144] Van de Vosse DW, Wan Y, Lapetina DL, et al. (2013) A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 152: 969-983. doi: 10.1016/j.cell.2013.01.049
    [145] Galy V, Olivo-Marin JC, Scherthan H, et al. (2000) Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403: 108-112. doi: 10.1038/47528
    [146] Buchwalter AL, Liang Y, Hetzer MW (2014) Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics. Mol Biol Cell 25: 2472-2484. doi: 10.1091/mbc.E14-04-0865
    [147] Gomez-Cavazos JS, Hetzer MW (2015) The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J Cell Biol 208: 671-681. doi: 10.1083/jcb.201410047
    [148] Iwamoto M, Koujin T, Osakada H, et al. (2015) Biased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in Tetrahymena. J Cell Sci 128: 1812-1823. doi: 10.1242/jcs.167353
    [149] Liang Y, Franks TM, Marchetto MC, et al. (2013) Dynamic association of NUP98 with the human genome. PLoS Genet 9: e1003308. doi: 10.1371/journal.pgen.1003308
    [150] Lupu F, Alves A, Anderson K, et al. (2008) Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo. Dev Cell 14: 831-842. doi: 10.1016/j.devcel.2008.03.011
    [151] D'Angelo MA, Gomez-Cavazos JS, Mei A, et al. (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22: 446-458. doi: 10.1016/j.devcel.2011.11.021
    [152] Lin Y, Yang Y, Li W, et al. (2012) Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell 48: 627-640. doi: 10.1016/j.molcel.2012.08.030
    [153] Yang J, Cai N, Yi F, et al. (2014) Gating pluripotency via nuclear pores. Trends Mol Med 20: 1-7.
    [154] Zhang X, Chen S, Yoo S, et al. (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135: 1017-1027. doi: 10.1016/j.cell.2008.10.022
    [155] Basel-Vanagaite L, Muncher L, Straussberg R, et al. (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60: 214-222. doi: 10.1002/ana.20902
    [156] van Koningsbruggen S, Gierlinski M, Schofield P, et al. (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21: 3735-3748. doi: 10.1091/mbc.E10-06-0508
    [157] Nemeth A, Conesa A, Santoyo-Lopez J, et al. (2010) Initial genomics of the human nucleolus. PLoS Genet 6: e1000889. doi: 10.1371/journal.pgen.1000889
    [158] Kim SK, Lee H, Han K, et al. (2014) SET7/9 methylation of the pluripotency factor LIN28A is a nucleolar localization mechanism that blocks let-7 biogenesis in human ESCs. Cell Stem Cell 15: 735-749. doi: 10.1016/j.stem.2014.10.016
    [159] Savic N, Bar D, Leone S, et al. (2014) lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15: 720-734. doi: 10.1016/j.stem.2014.10.005
    [160] Talamas JA, Capelson M (2015) Nuclear envelope and genome interactions in cell fate. Front Genet 6: 95.
    [161] Fischer AH (2014) The diagnostic pathology of the nuclear envelope in human cancers. Adv Exp Med Biol 773: 49-75. doi: 10.1007/978-1-4899-8032-8_3
    [162] de Las Heras JI, Schirmer EC (2014) The nuclear envelope and cancer: a diagnostic perspective and historical overview. Adv Exp Med Biol 773: 5-26. doi: 10.1007/978-1-4899-8032-8_1
    [163] Skvortsov S, Schafer G, Stasyk T, et al. (2011) Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res 10: 259-268. doi: 10.1021/pr100921j
    [164] Willis ND, Cox TR, Rahman-Casans SF, et al. (2008) Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3: e2988. doi: 10.1371/journal.pone.0002988
    [165] Vargas JD, Hatch EM, Anderson DJ, et al. (2012) Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3: 88-100. doi: 10.4161/nucl.18954
    [166] Fischer AH, Bardarov S, Jr., Jiang Z (2004) Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J Cell Biochem 91: 170-184. doi: 10.1002/jcb.10735
    [167] Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3: 413-438. doi: 10.1016/j.actbio.2007.04.002
    [168] Lammerding J, Fong LG, Ji JY, et al. (2006) Lamins A and C but not lamin B1 regulate nuclear mechanics. J Biol Chem 281: 25768-25780. doi: 10.1074/jbc.M513511200
    [169] Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12: 196-209.
    [170] Mjelle R, Hegre SA, Aas PA, et al. (2015) Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair (Amst) 30: 53-67. doi: 10.1016/j.dnarep.2015.03.007
    [171] Yi C, He C (2013) DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol 5: a012575. doi: 10.1101/cshperspect.a012575
    [172] Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2: 130-143.
    [173] Shroff R, Arbel-Eden A, Pilch D, et al. (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14: 1703-1711. doi: 10.1016/j.cub.2004.09.047
    [174] Jazayeri A, Falck J, Lukas C, et al. (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37-45. doi: 10.1038/ncb1337
    [175] Radhakrishnan SK, Jette N, Lees-Miller SP (2014) Non-homologous end joining: emerging themes and unanswered questions. DNA Repair (Amst) 17: 2-8. doi: 10.1016/j.dnarep.2014.01.009
    [176] Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134-147. doi: 10.1038/cr.2007.111
    [177] Lemaitre C, Grabarz A, Tsouroula K, et al. (2014) Nuclear position dictates DNA repair pathway choice. Genes Dev 28: 2450-2463. doi: 10.1101/gad.248369.114
    [178] Aymard F, Bugler B, Schmidt CK, et al. (2014) Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol 21: 366-374. doi: 10.1038/nsmb.2796
    [179] Horigome C, Oma Y, Konishi T, et al. (2014) SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol Cell 55: 626-639. doi: 10.1016/j.molcel.2014.06.027
    [180] Dion V, Gasser SM (2013) Chromatin movement in the maintenance of genome stability. Cell 152: 1355-1364. doi: 10.1016/j.cell.2013.02.010
    [181] Dion V, Kalck V, Horigome C, et al. (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14: 502-509. doi: 10.1038/ncb2465
    [182] Seeber A, Dion V, Gasser SM (2013) Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev 27: 1999-2008. doi: 10.1101/gad.222992.113
    [183] Neumann FR, Dion V, Gehlen LR, et al. (2012) Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev 26: 369-383. doi: 10.1101/gad.176156.111
    [184] Mahen R, Hattori H, Lee M, et al. (2013) A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One 8: e61893. doi: 10.1371/journal.pone.0061893
    [185] van Sluis M, McStay B (2015) A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev 29: 1151-1163. doi: 10.1101/gad.260703.115
    [186] Tang J, Cho NW, Cui G, et al. (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 20: 317-325. doi: 10.1038/nsmb.2499
    [187] Botuyan MV, Lee J, Ward IM, et al. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127: 1361-1373. doi: 10.1016/j.cell.2006.10.043
    [188] Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10: 243-254.
    [189] Constantinescu D, Csoka AB, Navara CS, et al. (2010) Defective DSB repair correlates with abnormal nuclear morphology and is improved with FTI treatment in Hutchinson-Gilford progeria syndrome fibroblasts. Exp Cell Res 316: 2747-2759. doi: 10.1016/j.yexcr.2010.05.015
    [190] Lattanzi G, Marmiroli S, Facchini A, et al. (2012) Nuclear damages and oxidative stress: new perspectives for laminopathies. Eur J Histochem 56: e45. doi: 10.4081/ejh.2012.e45
    [191] Richards SA, Muter J, Ritchie P, et al. (2011) The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 20: 3997-4004. doi: 10.1093/hmg/ddr327
    [192] Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28: 463-499. doi: 10.1016/S0891-5849(99)00242-7
    [193] Sieprath T, Corne T, Nooteboom M, et al. (2015) Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus 6: 236-246. doi: 10.1080/19491034.2015.1050568
    [194] Pekovic V, Gibbs-Seymour I, Markiewicz E, et al. (2011) Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 10: 1067–1079. doi: 10.1111/j.1474-9726.2011.00750.x
    [195] Viteri G, Chung YW, Stadtman ER (2010) Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech Ageing Dev 131: 2–8. doi: 10.1016/j.mad.2009.11.006
    [196] Csoka AB, Cao H, Sammak PJ, et al. (2004) Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41: 304–308. doi: 10.1136/jmg.2003.015651
    [197] Doubaj Y, De Sandre-Giovannoli A, Vera EV, et al. (2012) An inherited LMNA gene mutation in atypical Progeria syndrome. Am J Med Genet A 158A: 2881–2887. doi: 10.1002/ajmg.a.35557
    [198] Seco-Cervera M, Spis M, Garcia-Gimenez JL, et al. (2014) Oxidative stress and antioxidant response in fibroblasts from Werner and atypical Werner syndromes. Aging (Albany NY) 6: 231–245.
    [199] Schroder AR, Shinn P, Chen H, et al. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521–529. doi: 10.1016/S0092-8674(02)00864-4
    [200] Wong RW, Mamede JI, Hope TJ (2015) The Impact of Nucleoporin Mediated Chromatin localization and Nuclear Architecture on HIV Integration Site Selection. J Virol.
    [201] Marini B, Kertesz-Farkas A, Ali H, et al. (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature 521: 227–231.202. Lelek M, Casartelli N, Pellin D, et al. (2015) Chromatin organization at the nuclear pore favours HIV replication. Nat Commun 6: 6483. doi: 10.1038/nature14226

    © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
  • Reader Comments
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(6437) PDF downloads(2132) Cited by(4)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors


DownLoad:  Full-Size Img  PowerPoint