Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Surface modification of materials to encourage beneficial biofilm formation

1 School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor, Malaysia;
2 School of Public Health, Curtin University, Perth 6102, Western Australia

Special Issues: Biofilm engineering - Harnessing the power of beneficial biofilms

Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.
  Article Metrics

Keywords biofilms; chemical; organosilanes; modifications; plasma; surface

Citation: Amreeta Sarjit, Sin Mei Tan, Gary A. Dykes. Surface modification of materials to encourage beneficial biofilm formation. AIMS Bioengineering, 2015, 2(4): 404-422. doi: 10.3934/bioeng.2015.4.404


  • 1. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesions and biofilms on surfaces. Prog Nat Sci 18: 1049-1056.    
  • 2. Heydorn A, Ersboll BK, Hentzer M (2000) Experimental reproducibility in flow chamber biofilms. Microbiology 146: 2409-2415.    
  • 3. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14: 389-397.    
  • 4. Spector MP, Kenyon WJ (2012) Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res Int 45: 455-481.    
  • 5. Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75: 499-511.    
  • 6. Berlowska J, Kregiel D, Ambroziak W (2013) Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification. World J Microbiol Biotechnol 29: 1307-1316.    
  • 7. Kang CS, Eaktasang N, Kwon DY, et al. (2014) Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell. Bioresour Technol 165: 27-30.    
  • 8. Lackner S, Holmberg M, Terada A, et al. (2009) Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification. Water Res 43: 3469-3478.    
  • 9. Wang Y, Lee SM, Dykes GA (2014) The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies. Crit Rev Microbiol. http://dx.doi.org/10.3109/1040841X.2013.866072.
  • 10. Dunne WM (2002) Bacterial adhesion: Seen any good biofilms lately? Clin Microbiol Rev 15: 155-166.    
  • 11. Costerton JW, Cheng KJ, Geesey GG, et al. (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435-464.    
  • 12. Costerton JW, Lewandowski Z, Caldwell DE, et al. (1995) Microbial biofilms. Annu Rev Microbiol 49: 711-745.    
  • 13. Elder MJ, Stapleton F, Evans E, et al. (1995) Biofilm-related infections in ophthalmology. Eye 9: 102-109.    
  • 14. Ofek I, Doyle RJ (2000) Bacterial adhesion to cells and tissues. London/New York: Chapman & Hall.
  • 15. van der Aa BC, Dufrêne YF (2002) In situ characterization of bacterial extracellular polymeric substances by AFM. Colloid Surfaces B 23:173-182.
  • 16. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8: 881-890.    
  • 17. Kanematsu H, Barry DM (2015) Conditioning films, In: Kanematsu H., Barry D.M., Eds, Biofilm and Materials Science, New York: Springer, 9-16.
  • 18. Lorite GS, Rodrigues CM, de Souza AA, et al. (2011) The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J Colloid Interf Sci 359: 289-295.    
  • 19. Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study. FEMS Microbiol Rev 23: 179-230.    
  • 20. An YH, Dickinson RB, Doyle RJ (2000) Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections, In: An, Y.H., Friedman, R.J., Eds, Handbook of bacterial adhesion: principles, methods, and applications, New Jersey: Humana Press, 1-27.
  • 21. Boland T, Latour RA, Sutzenberger FJ (2000) Molecular basis of bacterial adhesion, In: An, Y.H., Friedman, R.J., Eds, Handbook of bacterial adhesion: principles, methods, and applications, New Jersey: Humana Press, 29-41.
  • 22. Brading MG, Jass J, Lappin-Scott HM (1995) Dynamics of bacterial biofilm formation, In: Lappin-Scott, H.M., Costerton, J.W., Eds, Microbial biofilms, New York: Cambridge University Press, 46-63.
  • 23. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322.    
  • 24. Mortensen KP, Conley SN (1994) Film fill fouling in counterflow cooling towers: Mechanisms and design. CTI J 15: 10-25.
  • 25. McDonogh R, Schaule G, Flemming HC (1994) The permeability of biofouling layers on membranes. J Membr Sci 87: 199-217.    
  • 26. Goulter RM, Gentle IR, Dykes GA (2009) Issues in determining factors influencing bacterial attachment: A review using the attachment of Escherichia coli to abiotic surfaces as an example. Lett Appl Microbiol 49: 1-7.    
  • 27. Bazaka K, Jacob MV, Truong VK, et al. (2011) The effect of polyterpenol thin film surfaces on bacterial viability and adhesion. Polymers 3: 388-404.    
  • 28. Bos R, Van der Mei HC, Gold J, et al. (2000) Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiol Lett 189: 311-315.    
  • 29. Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Tech 20: 407-413.
  • 30. Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis W.G., Marshall K.C., Eds, Biofilms, New York,Wiley, 93-130.
  • 31. Sheng G-P, Yu H-Q, Li X-Y (2010) Extracellular polymer substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Adv 28: 882-894.    
  • 32. Flemming H-C, Wingender J (2010) The biofilm matrix. Nature Rev Microbiol 8:623-633.
  • 33. Whitchurch CB, Tolker-Nielsen T, Ragas PC, et al. (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487.    
  • 34. Vilain S, Pretorius JM, Theron J, et al. (2009) DNA as an adhesion: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75: 2861-2868.
  • 35. Das T, Sharma PK, Busscher HJ, et al. (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76: 3405-3408.
  • 36. Das T, Sharma PK, Krom BP, et al. (2011) Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. Langmuir 27: 10113-10118.
  • 37. Harmsen M, Lappann M, Knochel S, et al (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76: 2271-2279.    
  • 38. Thomas VC, Thurlow LR, Boyle D, et al (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190: 5690-5698.    
  • 39. Polson EJ, Buckman JO, Bowen D, et al (2010) An environmental-scanning electron microscope investigation into the effect of biofilm on the wettability of quartz. Soc Pet J 15: 223-227.
  • 40. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60: 151-166.
  • 41. Olofsson A-C, Hermansson M, Elwing H (2003) N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol 69: 4814-4822.    
  • 42. Epifanio M, Inguva S, Kitching M, et al. (2015) Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells. Bioelectrochemistry 106: 186-193.    
  • 43. Bhattacharjee S, Ko CH, Elimelech M (1998) DLVO interaction between rough surfaces. Langmuir 14: 3365-3375.
  • 44. Czarnecki J, Warszyński P (1987) The evaluation of tangential forces due to surface in homogeneties in the particle deposition process. Colloid Surface 22: 197-205.
  • 45. Scheuerman TR, Camper AK, Hamilton MA (1998) Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 208: 23-33.    
  • 46. Chia TWR, Goulter RM, McMeekin T, et al. (2009) Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiol 26: 853-859.    
  • 47. Howell D, Behrends B (2006) A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling 22: 401-410.    
  • 48. Scardino A J, Harvey E, De Nys R (2006) Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Biofouling 22: 55-60.    
  • 49. Guðbjörnsdóttir B, Einarsson H, Thorkelsson G (2005) Microbial adhesion to processing lines for fish fillets and cooked shrimp: influence of stainless steel surface finish and presence of gram-negative bacteria on the attachment of Listeria monocytogenes. Food Technol Biotech 43: 55-61.
  • 50. Li B, Logan BE (2004). Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surface B 36: 81-90.    
  • 51. Kristich CJ, Li YH, Cvitkovitch, DG, et al. (2004) Esp-independent biofilm formation by Enterococcus faecalis. J Bacteriol 186: 154-163.    
  • 52. Stoodley P, Cargo R, Rupp CJ. (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29: 361-367.    
  • 53. Liu YJ, Tay JH (2002) Metabolic response of biofilm to shear stress in fixed-film culture. J Appl Microbiol 90: 337-342.
  • 54. Ohashi A, Harada H (2004) Adhesion strength of biofilm developed in an attached-growth reactor. Water Sci Technol 29: 281-288.
  • 55. Chen MJ, Zhang Z, Bott TR (1998) Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation. Biotechnol Tech 12: 875-880.    
  • 56. Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101: 1-8.    
  • 57. Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 317: 291-297.
  • 58. Quereshi FM. (2005) Genetic manipulation of genes for environmental bioremediation and construction of strains with multiple environmental bioremediation properties. Karachi, Pakistan: University of Karachi.
  • 59. Salah KA, Sheleh G, Levanon D, et al. (1996) Microbial degradation of aromatic and polyaromatic toxic compounds adsorbed on powdered activated carbon. J Biotechnol 51: 265-272.    
  • 60. Nishijima W, Speital G (2004) Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon. Chemosphere 56: 113-119.    
  • 61. Scholz M, Martin R (1997) Ecological equilibrium on biological active carbon. Water Res 31: 2959-2968.    
  • 62. Takeuchi Y, Mochidzuki K, Matsunobu N, et al. (1997) Removal of organic substances from water by ozone treatment followed by biological active carbon treatment. Water Sci Technol 35: 171-178.
  • 63. Zhang S, Huck P (1996) Parameter estimation for biofilm processes in biological water treatment. Water Res 30: 456-464.    
  • 64. Rabaey K, Clauwaert P, Aelterman P, et al. (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39: 8077-8082.    
  • 65. Upadhyayula VKK, Gadhamshetty V (2010) Appreciating the role of carbon nanotubes composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: A review. Biotechnol Adv 28: 802-816.    
  • 66. Kriegel D (2014) Advances in biofilm control for food and beverage industry using organo-silane technology: A review. Food Control 40: 32-40.    
  • 67. Mittal KL (2009) Silanes coupling agents in Silanes and other coupling agents. Netherland: Koninklijke Brill NV, 1-176.
  • 68. Van Ooij WJ, Child T (1998) Protecting metals with silane coupling agents. Chemtech 28: 26-35.
  • 69. Subramanian PR, van Ooij WJ (1999) Silane based metal pretreatments as alternatives to chromating. Surface Eng 15: 168-172.    
  • 70. Van Schaftinghen T, LePen C, Terryn H, et al. (2004) Investigation of the barrier properties of silanes on cold rolled steel. Electrochimica Acta 49: 2997-3004.    
  • 71. Materne T, de Buyl F, Witucki GL (2006) Organosilane technology in coating applications: Review and perspectives. USA: Dow Corning Corporation.
  • 72. Carré A, Birch W, Lacarriére V (2007) Glass substrate modified with organosilanes for DNA immobilization, In: Mittal, K.L., Ed., Silanes and other coupling agents, Netherlands: VSP Utrecht, 1-14.
  • 73. Li N, Ho C (2008) Photolithographic patterning of organosilane monolayer for generating large area two-dimensional B lymphocyte arrays. Lab on a Chip 8: 2105-2112.    
  • 74. Saal K, Tätte T, Tulp I, et al. (2006) Solegel films for DNA microarray applications. Mater Lett 60: 1833-1838.    
  • 75. Seo JH, Shin D, Mukundan P, et al. (2012) Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Colloids Surfaces B 98: 1-6.    
  • 76. Shriver-Lake LC, Charles PT, Taitt CR. (2008) Immobilization of biomolecules onto silica and silica-based surfaces for use in planar array biosensors. Methods Mol Biol 504: 419-440.
  • 77. Yamaguchi M, Ikeda K, Suzuki M, et al. (2011) Cell patterning using a template of microstructured organosilane layer fabricated by vacuum ultraviolet light lithography. Langmuir 27: 12521-12532.    
  • 78. Khramov AN, Balbyshev VN, Voevodin NN, et al. (2003) Nanostructured sol-gel derived conversion coatings based on epoxy- and amino-silanes. Prog Org Coat 47: 207-213.    
  • 79. White JS, Walker GM. (2011) Influence of cell surface characteristics on adhesion of Saccharomyces cerevisiae to the biomaterial hydroxylapatite. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 99: 201-209.    
  • 80. Bekers M, Ventina E, Karsakevich A, et al. (1999) Attachment of yeast to modified stainless steel wire spheres growth of cells and ethanol production. Process Biochem 35: 523-530.    
  • 81. Karsakevich A, Ventina E, Vina I, et al. (1998) The effect of chemical treatment of stainless steel wire surface on Zymomonas mobilis cell attachment and product synthesis. Acta Biotechnol 18: 255-265.    
  • 82. Friedrich J (2012) Plasma, In: Friedrich, J. Plasma chemistry of polymer surfaces advanced techniques for surface design, Ed., Weinheim, Germany: Wiley-VCH Verlag GmBH & Co. KGaA, 35-53.
  • 83. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polymer Sci 32: 698-725.    
  • 84. Cha S, Park YS (2014) Plasma in dentistry. Clin Plasma Med 2: 4-10.    
  • 85. Xiong Z, Cao Y, Lu X, et al. (2011) Plasmas in tooth root canal. IEEE Trans Plasma Sci 39: 2968-2969.    
  • 86. Okajima K, Ohta K, Sudoh M (2005) Capacitance behaviour of activated carbon fibers with oxygen-plasma treatment. Electrochim Acta 50: 2227-2231.    
  • 87. Díaz-Benito B, Velasco F (2013) Atmospheric plasma torch treatment of aluminium: Improving wettability with silanes. Appl Surface Sci 287: 263-269.    
  • 88. Kamgang JO, Naitali M, Herry JM, et al. (2009) Increase in the hydrophilicity and Lewis acid-base properties of solid surfaces achieved by electric gliding discharge in humid air: Effects on bacterial adherence. Plasma Sci Technol 11: 187-193.    
  • 89. Flexer V, Marque M, Donose BC, et al. (2013) Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochim Acta 108: 566-574.    
  • 90. He YR, Xiao X, Li WW, et al. (2012) Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Phys Chem Chem Phys 14: 9966-9971.
  • 91. Ploux L, Beckendorff S, Nardin M, et al. (2007) Quantitative and morphological analysis of biofilm formation on self-assembled monolayers. Colloid Surface B 57:174-181.    
  • 92. Lijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58.    
  • 93. Baughman RH, Zakhidov AA, de Heer WA. (2002) Carbon nanotubes—the route toward applications. Science 297: 787-792.    
  • 94. Li YH, Di ZC, Luan ZK, et al. (2004) Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics. J Environ Sci (China) 16: 208-211.
  • 95. Yan XM, Shi BY, Lu JJ, et al. (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321: 30-38.    
  • 96. Gotovac S, Yang CM, Hattori Y, et al. (2007) Adsorption of poly aromatic hydrocarbons on single walled carbon nanotubes of different functionalities and diameters. J Colloid Interface Sci 314: 18-24.    
  • 97. Lu C, Chung YL, Chang KF (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39: 1183-1189.    
  • 98. Pan B, Lin D, Mashayekhi H, et al. (2008) Adsorption and hysteresis of bisphenol A and 17-α-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 2008: 15.
  • 99. Upadhyayula VKK, Deng S, Mitchell MC, et al. (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci Total Environ 408: 1-13.    
  • 100. Hyung H, Kim JH (2008) Natural organic matter (NOM) adsorption to multi walled carbon nanotubes: effect on NOM characteristics and water quality parameters. Environ Sci Technol 42: 4416-4421.    
  • 101. Yan H, Gong A, He H, et al. (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62: 142-148.    
  • 102. Corry B (2008) Designing carbon nanotube membrane for efficient water desalination. J Phys Chem B 112: 1427-1434.    
  • 103. Raval HD, Gohil JM (2009) Carbon nanotube membrane for water desalination. Int J Nucl Desal 3: 360-368.    
  • 104. Huang S, Maynor B, Cai X, et al. (2003) Ultralong well-aligned single-walled carbon nanotube architecture on surfaces. Adv Mater 15: 1651-1655.    
  • 105. Agnihotri S, Mota JPB, Rostam-Abadi M, et al. (2005) Structural characterization of single walled carbon nanotube bundles by experiment and molecular simulation. Langmuir 21: 896-904.    
  • 106. Benny TH, Bandosz TJ, Wong SS (2008) Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single walled carbon nanotubes. J Colloid Interface Sci 317: 375-382.    
  • 107. Chen Y, Liu C, Li F, et al. (2006) Pore structures of multi walled carbon nanotubes activated by air, CO2 and KOH. J Porous Mater 13: 141-146.    
  • 108. Liao Q, Sun J, Gao L (2008) Adsorption of chlorophenols by multi walled carbon nanotubes treated with HNO3 and NH3. Carbon 46: 544-561.    
  • 109. Mauter SM, Elimelech M (2008) Environmental applications of carbon based nanomaterials. Environ Sci Technol 42: 5843-5859.    
  • 110. Niu JJ, Wang JN, Jiang Y, et al. (2007) An approach to carbon nanotubes with high surface area and large pore volume. Microporous Mesoporous Mater 100: 1-5.    
  • 111. Deng S, Upadhyayula VKK, Smith GB, et al. (2008) Adsorption equilibrium and kinetics of microorganisms on single walled carbon nanotubes. IEEE Sens 8: 954-962.    
  • 112. Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578: 59-74.    
  • 113. Zou Y, Xiang C, Yang L, et al. (2008) A mediator less microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energ 33: 4856-4862.    
  • 114. Sharma T, Mohana Reddy AL, Chandra TS, et al. (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrogen Energ 33: 6749-6754.    
  • 115. Odaci D, Timur S, Telefoncu A (2009) A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochemistry 75: 77-82.    
  • 116. Qiao Y, Li CM, Bao SJ, et al. (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170: 79-84.    
  • 117. Nambiar S, Togo CA, Limson JL (2009) Application of multi-walled carbon nanotubes to enhance anodic performance of an Enterobacter cloacae based fuel cell. Afr J Biotechnol 8: 6927-6932.
  • 118. Chen J, Yu Z, Sun J, et al. (2008) Preparation of biofilm electrode with Xanthomonas sp. and carbon nanotubes and the application to rapid biochemical oxygen demand analysis in high salt condition. Water Environ Res 80: 699-702.
  • 119. Timur S, Anik U, Odaci D, et al. (2007) Development of microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem Commun 9: 1810-1815.    
  • 120. Kanepalli S, Donna FE (2006) Enhancing the remediation of trichloroethane (TCE) using double-walled carbon nanotubes (DWNT): United States Geological Survey.
  • 121. Pumera M (2007) Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperatures because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23: 6453-6458.
  • 122. Logan BE, Hamelers B, Rozendal R, et al. (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40: 5181-5192.    
  • 123. Tang X, Guo K, Li H, et al. (2011) Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour Technol 102: 3558-3560.    
  • 124. Cercado-Quezada B, Delia ML, Bergel A (2011) Electrochemical microstructuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes. Electrochem Commun 13: 440-443.    
  • 125. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9: 492-496.    
  • 126. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81: 348-355.    
  • 127. Zhou M, Chi M, Wang H, et al. (2012) A new practical method to improve the performance of microbial fuel cells. Biochem Eng J 60: 151-155.    
  • 128. Jin T, Luo J, Yang J, et al. (2012) Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells. J Power Sources 219: 358-363.    
  • 129. Popov AL, Kim JR, Dinsdale RM, et al. (2012) The effect of physic-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell. Biotechnol Bioprocess Eng 17: 361-370.    
  • 130. Guo K, Chen X, Freguia BC, et al. (2013) Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems. Biosens Bioelectron 47: 184-189.    


Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Gary A. Dykes, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved