Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Methods to study microbial adhesion on abiotic surfaces

1 LEPABE—Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal;
2 CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal

Special Issues: Biofilm engineering - Harnessing the power of beneficial biofilms

Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.
  Article Metrics

Keywords biofilms; experimental methods; microbial adhesion; predictive methods

Citation: Ana Meireles, Ana L. Gonçalves, Inês B. Gomes, Lúcia Chaves Simões, Manuel Simões. Methods to study microbial adhesion on abiotic surfaces. AIMS Bioengineering, 2015, 2(4): 297-309. doi: 10.3934/bioeng.2015.4.297


  • 1. Cos P, Tote K, Horemans T, et al. (2010) Biofilms: an extra hurdle for effective antimicrobial therapy. Curr Pharm Design 16: 2279-2295.    
  • 2. Costerton JW, Lewandowski Z, Caldwell DE, et al. (1995) Microbial biofilms. Ann Rev Microbiol 49: 711-745.    
  • 3. Simões M (2011) Antimicrobial strategies effective against infectious bacterial biofilms. Curr Med Chem 18: 2129-2145.    
  • 4. Stoodley P, Sauer K, Davies D, et al. (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56: 187-209.    
  • 5. Percival SL, Malic S, Cruz H, et al. (2011) Introduction to biofilms, Biofilms and Veterinary Medicine: Springer, 41-68.
  • 6. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8.
  • 7. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18: 1049-1056.    
  • 8. Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20: 407-413.    
  • 9. Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101: 1-8.    
  • 10. Qureshi N, Annous BA, Ezeji TC, et al. (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4: 24.    
  • 11. Seghezzo L, Zeeman G, van Lier JB, et al. (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65: 175-190.    
  • 12. Bland R, Chen H, Jewell W, et al. (1982) Continuous high rate production of ethanol by Zymomonas mobilis in an attached film expanded bed fermentor. Biotechnol Lett 4: 323-328.    
  • 13. Todhanakasem T, Sangsutthiseree A, Areerat K, et al. (2014) Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol 31: 451-459.    
  • 14. Qureshi N, Maddox I (1987) Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Enzyme Microb Technol 9: 668-671.    
  • 15. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14: 512-518.    
  • 16. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167-193.    
  • 17. Characklis WG, Marshall KC (1990) Biofilms, New York: John Wiley & Sons.
  • 18. Simões M, Bennett RN, Rosa EA (2009) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26: 746-757.    
  • 19. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15: 155-166.    
  • 20. Simões LC, Simões M (2013) Biofilms in drinking water: problems and solutions. RSC Adv 3: 2520-2533.    
  • 21. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43: 338-348.
  • 22. de Schryver P, Crab R, Defoirdt T, et al. (2008) The basics of bio-flocs technology: the added value for aquaculture. Aquaculture 277: 125-137.    
  • 23. Kokare C, Chakraborty S, Khopade A, et al. (2009) Biofilm: Importance and applications. Indian J Biotechnol 8: 159-168.
  • 24. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182: 2675-2679.    
  • 25. Sobeck DC, Higgins MJ (2002) Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res 36: 527-538.    
  • 26. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces 14: 105-119.    
  • 27. Simões LC, Simões M, Vieira MJ (2010) Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie van Leeuwenhoek 98: 317-329.    
  • 28. Bhaskar P, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88: 45-53.
  • 29. van Oss C (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf B: Biointerfaces 5: 91-110.    
  • 30. van Oss C, Chaudhury M, Good R (1987) Monopolar surfaces. Adv Colloid Interf Sci 28: 35-64.    
  • 31. van Oss C, Ju L, Chaudhury M et al. (1989) Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J Colloid Interf Sci 128: 313-319.    
  • 32. van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4: 884-891.    
  • 33. Ozkan A, Berberoglu H (2013) Cell to substratum and cell to cell interactions of microalgae. Colloids Surf B: Biointerfaces 112: 302-309.    
  • 34. van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16: 177-190.    
  • 35. Janczuk B, Chibowski E, Bruque J et al. (1993) On the consistency of surface free energy components as calculated from contact angles of different liquids: an application to the cholesterol surface. J Colloid Interface Sci 159: 421-428.    
  • 36. Busscher HJ, van der Mei HC (2006) Microbial adhesion in flow displacement systems. Clin Microbiol Rev 19: 127-141.    
  • 37. Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Meth 72: 157-165.    
  • 38. Stepanović S, Vuković D, Hola V, et al. (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathol Microbiol Immunol Scand 115: 891-899.    
  • 39. Pavarina AC, Dovigo LN, Sanitá PV, et al. (2011) Dynamic models for in vitro biofilm formation, In: Bailey WC (ed), Biofilms: Formation, Development and Properties: Nova Science Publishers, Inc.
  • 40. Kumar S, Wittmann C, Heinzle E (2004) Review: minibioreactors. Biotechnol Lett 26: 1-10.    
  • 41. Vesterlund S, Paltta J, Karp M, et al. (2005) Measurement of bacterial adhesion—in vitro evaluation of different methods. J Microbiol Meth 60: 225-233.    
  • 42. Merritt K, An YH (2000) Factors influencing bacterial adhesion, In: An YH, Friedman RJ (eds), Handbook of Bacterial Adhesion: Principles, Methods, and Applications, Totowa, New Jersey: Humana Press, 53-72.
  • 43. Fux CA, Shirtliff M, Stoodley P, et al. (2005) Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol 13: 58-63.    
  • 44. Frioni A, Natalizi T, Tendini M, et al. (2010) Biotimer assay for counting bacterial biofilm. Biophys Bioeng Lett 3.
  • 45. An YH, Friedman RJ (1997) Laboratory methods for studies of bacterial adhesion. J Microbiol Methods 30: 141-152.    
  • 46. Christensen GD, Simpson WA, Anglen JO, et al. (2000) Methods for evaluating attached bacteria and biofilms, In: An YH, Friedman RJ (eds), Handbook of Bacterial Adhesion: Principles, Methods, and Applications, Totowa, New Jersey: Humana Press, 213-233.
  • 47. Martin KL, An YH (2000) Basic equipment and microbiological techniques for studying bacterial adhesion, In: An YH, Friedman RJ (eds), Handbook of Bacterial Adhesion: Principles, Methods, and Applications, Totowa, New Jersey: Humana Press, 103-120.
  • 48. Müller DJ, Dufrêne YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21: 461-469.    
  • 49. Pantanella F, Berlutti F, Passeri D, et al. (2011) Quantitative evaluation of bacteria adherent and in biofilm on single-wall carbon nanotube-coated surfaces. Interdiscip Perspect Infect Dis 2011.
  • 50. Merritt K, Gaind A, Anderson JM (1998) Detection of bacterial adherence on biomedical polymers. J Biomed Mater Res 39: 415-422.
  • 51. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60: 641-696.
  • 52. Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Meth 63: 287-295.    
  • 53. Stepanović S, Vuković D, Dakić I, et al. (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Meth 40: 175-179.    
  • 54. Pantanella F, Valenti P, Natalizi T, et al. (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25: 31-42.
  • 55. Robrish SA, Kemp CW, Bowen WH (1978) Use of extractable adenosine triphosphate to estimate the viable cell mass in dental plaque samples obtained from monkeys. Appl Environ Microbiol 35: 743-749.
  • 56. Harber MJ, Mackenzie R, Asscher AW (1983) A rapid bioluminescence method for quantifying bacterial adhesion to polystyrene. J Gen Microbiol 129: 621-632.
  • 57. Dostálek P, Brányik T (2003) Prospects for rapid bioluminescent detection methods in the food industry—a review. Czech J Food Sci 23: 85-92.
  • 58. Xi J, Chen JY, Garcia MP, et al. (2013) Quartz crystal microbalance in cell biology studies. J Biochips Tissue Chips S5: 1-9.
  • 59. Pereira A, Mendes J, Melo LF (2009) Monitoring cleaning-in-place of shampoo films using nanovibration technology. Sensor Actuat B: Chem 136: 376-382.    
  • 60. Pereira A, Mendes J, Melo LF (2008) Using nanovibrations to monitor biofouling. Biotechnol Bioeng 99: 1407-1415.    
  • 61. Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. J Spectrosc 17: 255-273.    
  • 62. Fletcher M (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170: 2027-2030.


This article has been cited by

  • 1. , Influence of Substratum Hydrophobicity on the Geomicrobiology of River Biofilm Architecture and Ecology Analyzed by CMEIAS Bioimage Informatics, Geosciences, 2017, 7, 3, 56, 10.3390/geosciences7030056
  • 2. Juan Bueno, , Essential Oils and Nanotechnology for Treatment of Microbial Diseases, 2017, 209, 10.1201/9781315209241-13
  • 3. Ansorena M. Roberta, Ponce G. Alejandra, , Microbial Contamination and Food Degradation, 2018, 85, 10.1016/B978-0-12-811515-2.00004-4
  • 4. Hao Yuan, Xinru Zhang, Zeyi Jiang, Xuehui Chen, Xinxin Zhang, A Quantitative Criterion to Predict Cell Adhesion by Identifying the Dominant Interaction between Microorganism and Abiotic Surface, Langmuir, 2018, 10.1021/acs.langmuir.8b03465
  • 5. Todd E. Alexander, Lindsay D. Lozeau, Terri A. Camesano, QCM-D Characterization of Time-Dependence of Bacterial Adhesion, The Cell Surface, 2019, 100024, 10.1016/j.tcsw.2019.100024

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Manuel Simões, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved