Research article

Morphoagronomic and industrial performance of cassava (Manihot esculenta Crantz) germplasm for the production of starch and solid byproducts

  • Received: 16 June 2020 Accepted: 08 September 2020 Published: 18 September 2020
  • The objective of the present research work was to study the morphoagronomic and industrial performance of three cassava clones. The study was carried out in two stages: A) the MMEXV5, MMEXV40, and MMEXCH23 clones were established in a subhumid warm climate; B) the storage roots were processed. For the first essay, a randomized complete block design was used, while for the second essay, a completely randomized design was used. An ANOVA analysis was done, as well as a means comparison (Tukey, 0.05) and a Principal Component Analysis (PCA). The ANOVA showed differences in the evaluated traits (p ≤ 0.05). The MMEXV5 clone showed high storage roots yield (RY = 41.24 t ha-1), plant height (PH = 4.79 m), and pulp (PUL = 80.58%); MMEXCH23 achieved higher contents of bagasse and peel; while, MMEXV40 had the highest total starch extraction (STL = 12.57%). Additionally, the three clones reached high dry matter content (DM = 34.22 to 38%), trait considered a quality factor. The PCA showed that RY was associated with a higher number of storage roots generated, PH, PUL, and lobe dimensions; but, the clones with high RY and PH developed poor DM and yield of starch extraction. Finally, the valorization of the evaluated germplasm could make cassava into the basic raw material in a great variety of products with high added value for the food and non-food industry, even obtain bioproducts and bioenergy through the conversion of bagasse and peel.

    Citation: José Luis Del Rosario-Arellano, Isaac Meneses-Márquez, Otto Raúl Leyva-Ovalle, Noé Aguilar-Rivera, Gloria Ivette Bolio-López, Pablo Andrés-Meza. Morphoagronomic and industrial performance of cassava (Manihot esculenta Crantz) germplasm for the production of starch and solid byproducts[J]. AIMS Agriculture and Food, 2020, 5(4): 617-634. doi: 10.3934/agrfood.2020.4.617

    Related Papers:

  • The objective of the present research work was to study the morphoagronomic and industrial performance of three cassava clones. The study was carried out in two stages: A) the MMEXV5, MMEXV40, and MMEXCH23 clones were established in a subhumid warm climate; B) the storage roots were processed. For the first essay, a randomized complete block design was used, while for the second essay, a completely randomized design was used. An ANOVA analysis was done, as well as a means comparison (Tukey, 0.05) and a Principal Component Analysis (PCA). The ANOVA showed differences in the evaluated traits (p ≤ 0.05). The MMEXV5 clone showed high storage roots yield (RY = 41.24 t ha-1), plant height (PH = 4.79 m), and pulp (PUL = 80.58%); MMEXCH23 achieved higher contents of bagasse and peel; while, MMEXV40 had the highest total starch extraction (STL = 12.57%). Additionally, the three clones reached high dry matter content (DM = 34.22 to 38%), trait considered a quality factor. The PCA showed that RY was associated with a higher number of storage roots generated, PH, PUL, and lobe dimensions; but, the clones with high RY and PH developed poor DM and yield of starch extraction. Finally, the valorization of the evaluated germplasm could make cassava into the basic raw material in a great variety of products with high added value for the food and non-food industry, even obtain bioproducts and bioenergy through the conversion of bagasse and peel.


    加载中


    [1] Howeler R, Lutaladio N, Thomas G (2013) Save and grow: Cassava: A guide to sustainable production intensification. Rome, 129.
    [2] Mtunguja MK, Thitisaksakul M, Muzanila YC, et al. (2016) Assessing variation in physicochemical, structural, and functional properties of root starches from novel Tanzanian cassava (Manihot esculenta Crantz.) landraces. Starch‐Stärke 68: 514-527.
    [3] Buddhakulsomsiri J, Parthanadee P, Pannakkong W (2018) Prediction models of starch content in fresh cassava roots for a tapioca starch manufacturer in Thailand. Comput Electron Agric 154: 296-303.
    [4] Atwijukire E, Hawumba JF, Baguma Y, et al. (2019) Starch quality traits of improved provitamin A cassava (Manihot esculenta Crantz). Heliyon 5: 1-18.
    [5] FAO (Food and Agriculture Organization of the United Nations) (2018) Food outlook-biannual report on global food markets-november 2018. Roma, Italia, 100.
    [6] Lebot V (2016) Tropical roots and tuber crops, cassava, sweet potate, yams and aroids. Cabi, 541.
    [7] Parmar A, Sturm B, Hensel O (2017) Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Secur 9: 907-927.
    [8] Papong S, Malakul P, Trungkavashirakun R, et al. (2014) Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J Cleaner Prod 65: 539-550.
    [9] van den Oever M, Molenveld K, Zeevan van der M, et al. (2017) Bio-based and biodegradable plastics: Facts and figures: Focus on food packaging in the Netherlands. Wageningen Food & Biobased Res Report 1722: 1-67.
    [10] European Bioplastics (2018) Bioplastics market data, 2018. Available from: https://www.european-bioplastics.org/market/.
    [11] IFBB (Institute for Bioplastics and Biocomposites) (2019) Biopolymers facts and statistics, production capacities, processing routes, feedstock, land and water use. Available from: https://www.ifbb-hannover.de/en/facts-and-statistics.html.
    [12] Olusola AJ, Adebiyi OB, Riyaad K (2015) Evaluation of new cassava varieties for adhesive properties. Starch/Staerke 67: 561-566.
    [13] Onyenwoke CA, Simonyan KL (2014) Cassava post-harvest processing and storage in Nigeria: A review. Afr J Agric Res 9: 3853-3863.
    [14] Veiga JPS, Valle TL, Feltran JC, et al. (2016) Characterization and productivity of cassava waste and its use as an energy source. Renewable Energy 93: 691-699.
    [15] Byju G, Nedunchezhiyan M, Ravindran CS, et al. (2012) Modeling the response of cassava to fertilizers: A site-specific nutrient management approach for greater tuberous root yield. Commun Soil Sci Plant Anal 43: 1149-1162.
    [16] Howeler R (2014) Sustainable soil and crop management of cassava in Asia: A reference manual. CIAT Publication No. 389. Cali, Colombia, Centro Internacional de Agricultura Tropical (CIAT), 280.
    [17] Polthanee A, Srisutham M (2017) Supplementary irrigation for cassava planted in the late rainy season of northeastern Thailand. Asian J Crop Sci 9: 100-108.
    [18] Munyahali W, Pypers P, Swennen R, et al. (2017) Responses of cassava growth and yield to leaf harvesting frequency and NPK fertilizer in South Kiv, Democratic Republic of Congo. Field Crops Res 214: 194-201.
    [19] Amamgbo LEF, Akinpelu AO, Omodamiro R, et al. (2016) Promotion and popularization of some elite cassava varieties in IgbariamAnambra state: Implication for food security and empowerment. Global Adv Res J Agric Sci 5: 61-66.
    [20] Saraiva LS, Ledo CDS, Santos VDS (2019) Effect of harvesting times on agronomic characteristics of industrial cassava genotypes. Revista Brasileira de Ciências Agrárias 14: 1-6.
    [21] Agre AP, Bhattacharjee R, Dansi A, et al. (2017) Assessment of cassava (Manihot esculenta Crantz) diversity, loss of landraces and farmers preference criteria in southern Benin using farmers' participatory approach. Genet Resour Crop Evol 64: 307-320.
    [22] Kombate K, Dansi D, Dossou-Aminon I, et al. (2017) Diversity of cassava (Manihot esculenta Crantz) cultivars in the traditional agriculture of Togo. Int J Curr Res Biosci Plant Biol 6: 3328-3240.
    [23] Vieira E A, Fialho JDF, Carvalho LJCB, et al. (2015) Agronomic performance of sweet cassava germplasm accesses in Cerrados area of Unaí County, northeast region of Minas Gerais. Científica (Jaboticabal) 43: 371-377.
    [24] Peprah BB, Parkes E, Manu-Aduening J, et al. (2020) Genetic variability, stability and heritability for quality and yield characteristics in provitamin A cassava varieties. Euphytica 216: 1-13.
    [25] Buddhakulsomsiri J, Parthanadee P, Praneetpholkrang P (2015) Determining appropriate production and inbound logistics practices for a cassava supply chain in Thailand. Nat Sci 49: 937-950.
    [26] Ceballos H, Hershey CH (2017) Cassava (Manihot esculenta Crantz). In: Genetic Improvement of Tropical Crops, 129-180.
    [27] Chavalparit O, Ongwandee M (2009) Clean technology for the tapioca starch industry in Thailand. J Cleaner Prod 17: 105-110.
    [28] Li S, Cui Y, Zhou Y, et al. (2017) The industrial applications of cassava: Current status, opportunities and prospects. J Sci Food Agric 97: 2282-2290.
    [29] Santos SA, Lopes SY, Araújo KR, et al. (2017) Waste bio-refineries for the cassava starch industry: New trends and review of alternatives. Renewable Sustainable Energy Rev 73: 1265-1275.
    [30] Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management: Engineering principles and management issues. McGraw-Hill, New York, 3-22.
    [31] Trakulvichean S, Chaiprasert P, Otmakhova J, et al. (2017) Integrated economic and environmental assessment of biogas and bioethanol production from cassava cellulosic waste. Waste Biomass Valorization 10: 691-700.
    [32] Travalini AP, Lamsal B, Magalhães WLE, et al. (2019) Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. Int J Biol Macromol 139: 1151-1161.
    [33] Pothiraj C, Balaji P, Eyini M (2006) Raw starch degrading amylase production by various fungal cultures grown on cassava waste. Mycobiology 34: 128-130.
    [34] Anyanwu CN, Ibeto CN, Ezeoha SL, et al. (2015) Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renewable Energy 81: 745-752.
    [35] Tran T, Da G, Moreno-Santander MA, et al. (2015) A comparison of energy use, water use and carbon footprint of cassava starch production in Thailand, Vietnam and Colombia. Resour, Conserv Recycl 100: 31-40.
    [36] Xiong X, Iris KM, Tsang DC, et al. (2019) Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chem Eng J 375: 24.
    [37] Pandey A, Soccol CR, Nigam P, et al. (2000) Biotechnological potential of agro-industrial residues. Ⅱ: cassava bagasse. Bioresour Technol 74: 81-87.
    [38] FAOSTAT (Statistics Division Food and Agriculture Organization of the United Nations) (2019) Data production crops. Roma, Italia. Available from: http://www.fao.org/faostat/en/#data/QC.
    [39] Góngora-Chin RE, Flores-Guido S, Ruenes-Morales MR, et al. (2016) Uso tradicional de la flora y fauna en los huertos familiares mayas en el municipio de Campeche, Campeche, México. Ecosistemas y Recursos Agropecuarios 3: 379-389.
    [40] Mateos-Maces L, Castillo-González F, Chávez SJL, et al. (2016) Manejo y aprovechamiento de la agrobiodiversidad en el sistema milpa del sureste de México. Acta Agronómica 65: 413-421.
    [41] Meléndez GL, Hirose LJ (2018) Patrones culinarios asociados al camote (Ipomoea batatas) y la yuca (Manihot esculenta) entre los mayas yucatecos, ch'oles y huastecos. Estudios de Cultura Maya LII 52: 193-226.
    [42] Centurión-Hidalgo D, Espinosa-Moreno J, Cruz-Lázaro E, et al. (2019) Estacionalidad de los vegetales comercializados en los mercados públicos del estado de Tabasco del estado de Tabasco. Revista de Alimentación Contemporánea y Desarrollo Regional 29: 16.
    [43] Ballesteros P, Rodríguez PG, Zavala HLA, et al. (2011) La yuca (Manihot esculenta Crantz), cultivo promisorio para Guerrero. In: Instituto Tecnológico Ciudad Altamirano & Fundación Produce de Guerreo A. C. (Eds.), manual técnico agricultura, 14-25.
    [44] Meneses MI, Vázquez HA, Rosas GX, et al. (2014) Contenido de materia seca y almidón en clones de yuca (Manihot esculenta Crantz). Revista Biológico Agropecuaria Tuxpan 26: 271-274.
    [45] SINAREFI (Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura) (2013) Manejo, evaluación y acciones que promueven la conservación de yuca (Manihot esculenta Crantz) en México. Resina, Macro Red Impulso, 30.
    [46] SMN-CONAGUA (Servicio Meteorológico Nacional-Comisión Nacional del Agua) (2020) Información estadística climatológica. Estación climatológica El Tejar, Medellín, Veracruz, México. Datos de temperatura y precipitación. Available from: https://smn.conagua.gob.mx/es/climatologia/informacionclimatologica/informacion-estadistica-climatologica.
    [47] García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México, 5: 98.
    [48] NOM-021-RECNAT-2000 (Norma Oficial Mexicana) (2002) NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial. Available from: http://extwprlegs1.fao.org/docs/pdf/mex50674.pdf.
    [49] Del Rosario-Arellano JL, Meneses-Márquez I, Andrés-Meza P, et al. (2017) Caracterización morfo-agronómica de accesiones de yuca (Manihot esculenta Crantz). In: Perez-Soto F, Figueroa-Hernández E, García-Nuñez RM, et al. Genética y fertilización en la producción agrícola, 60-72.
    [50] Fukuda WMG, Guevara CL, Kawuki R, et al. (2010) Selected morphological and agronomic descriptors for the characterization of cassava. IITA, Ibadan, Nigeria, 19.
    [51] Aguiar EB, Valle TL, Lorenzi JO, et al. (2011) Efeito da densidade populacional e época de colheita na produção de raízes de mandioca de mesa. Bragantia 70: 561-569.
    [52] López OV, Viña SZ, Pachas ANA, et al. (2010) Composition and food properties of Pachyrhizus ahipa roots and starch. Int J Food Sci Technol 45: 223-233.
    [53] Vargas ENA, Veleva L, Rodríguez CM, et al. (2017) Yuca (Manihot esculenta), alternativa para la producción de bioplásticos. In Martínez SR, González HRI (Ed.). La Ingeniería ambiental y química ante los problemas ambientales en el sureste mexicano, 159-174.
    [54] Versino F, García MA (2014) Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind Crops Prod 58: 305-314.
    [55] Studio R (2018) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL. Available from: http://www.rstudio.com/.
    [56] ECOCROP (Crop Ecological Requirements Database) (2014) Data sheet. Available from: http://ecocrop.fao.org/ecocrop/srv/en/dataSheet?id=1420.
    [57] El-Sharkawy MA (2006) International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 44: 481-512.
    [58] Daryanto S, Wang L, Jacinthe PA (2016) Drought effects on root and tuber production: A meta-analysis. Agric Water Manage 176: 122-131.
    [59] Okogbenin E, Setter TL, Ferguson ME, et al. (2013) Phenotypic approaches to drought in cassava: Review. Front Physiol 4: 1-15.
    [60] Gregory PJ, Wojciechowski T (2020) Root systems of major tropical root and tuber crops: Root architecture, size, and growth and initiation of storage organs. Adv Agron 161: 1-25.
    [61] Bellotti A, Campo BVH, Hyman G (2012) Cassava production and pest management: Present and potential threats in a changing environment. Trop Plant Biol 5: 39-72.
    [62] Parsa S, Medina C, Rodriguez V (2015) Sources of pest resistance in cassava. Crop Prot 68: 79-84.
    [63] Ceballos H, de la Cruz AGA (2002) Taxonomía y morfología de la yuca. In: Ospina IAB, Ceballos H, (Eds.). La yuca en el tercer milenio. Sistemas modernos de producción procesamiento, utilización y comercialización, 15-32.
    [64] Hershey C (2017) Achieving sustainable cultivation of cassava. Genetics, breeding, pests and diseases. Burleigh Dodds Science Publishing Limited, 2: 301.
    [65] Omondi JO, Lazarovitch N, Rachmilevitch S, et al. (2018) Nutrient use efficiency and harvest index of cassava decline as fertilization solution concentration increases. J Plant Nutr Soil Sci 181: 644-654.
    [66] Byju G, Suja G (2020) Mineral nutrition of cassava. In: Advances in Agronomy (1st ed., Vol. 159). Elsevier Inc.
    [67] Adiele JG, Schut AGT, van den Beuken RPM, et al. (2020) Towards closing cassava yield gap in west Africa: Agronomic efficiency and storage root yield responses to NPK fertilizers. Field Crops Res 253: 107820.
    [68] Odubanjo O, Olufayo A, Oguntunde P (2011) Water use, growth, and yield of drip irrigated cassava in a humid tropical environment. Soil Water Res 6: 10-20.
    [69] Borgues VA, Perreira DR, Morgante CV, et al. (2019) Early prediction models for cassava root yield in different water regimes. Field Crops Res 239: 149-158.
    [70] Payvandi S, Daly KR, Jones DL, et al. (2014) A mathematical model of water and nutrient transport in xylem vessels of a wheat plant. Bull Math Biol 76: 566-596.
    [71] Nadjiam D, Sarr PS, Naïtormbaïdé M, et al. (2016) Agro-morphological characterization of cassava (Manihot esculenta Crantz) cultivars from Chad. Agric Sci 7: 14.
    [72] Oliveira EC, de Almeida LHC, Zucareli C, et al. (2019) Analysis of cassava growth at different harvest times and planting densities. Semina: CiênciasAgrárias 40: 113-126.
    [73] Silva GR, Freitas de Almeida C, da Silva CJR, et al. (2016) Genetic diversity in sweet cassava from the brazilian middle north region and selection of genotypes based on morpho-agronomical descriptors. Afr J Agric Res 11: 3710-3719.
    [74] Zayas-Infante S, Boeckx P, Vargas-Rodríguez H (2019) Comportamiento productivo en agroecosistemas de intercalamiento yuca-frijol en el municipio "Calixto García", provincia Holguín. Cultivos Tropicales 40: a03-e03.
    [75] Manrique LA (1990) Plant morphology of cassava during summer and winter. Agron J 82: 881-886.
    [76] Salcedo MJ, Chavarria AB, Pérez BJ (2017) Arquitectura del dosel en yuca (Manihot esculenta Crantz) en el bosque seco tropical en Colombia. Revista Colombiana de Ciencia Animal 9: 271-280.
    [77] Pipatsitee P, Eiumnoh A, Praseartkul P, et al. (2019) Non-destructive leaf area estimation model for overall growth performance in relation to yield attributes of cassava (Manihot esculenta Crantz) under water deficit conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47: 580-591.
    [78] Biratu GK, Elias E, Ntawuruhunga P, et al. (2018) Cassava response to the integrated use of manure and NPK fertilizer in Zambia. Heliyon 4: e00759.
    [79] Dias CA, Silveira VAE, Freire MW, et al. (2014) Avaliação de variedades de mandioca tipo indústria. Magistra, Cruz Das Almas 26: 456-466.
    [80] Dje BIR, Kouassi KI, Koffi KK, et al. (2018) Evaluation of cassava varieties for weed tolerance ability. Expl Agric 54: 443-451.
    [81] Kang L, Liang Q, Jiang Q, et al. (2020) Screening of diverse cassava genotypes based on nitrogen uptake efficiency and yield. J Int Agric 19: 965-974.
    [82] Tumuhimbise R, Melis R, Shanahan P, et al. (2014) Genotype×environment interaction effects on early fresh storage root yield and related traits in cassava. Crop J 2: 329-337.
    [83] Alarcón MF, Dufour D (1998) Almidón agrio de yuca en Colombia: Tomo I. Producción y recomendaciones. Cali, Colombia: Centro Internacional de Agricultura Tropical. Montpellier Francia: Centro de Cooperación Internacional en recherche agronomique pour le dèveloppement, 35.
    [84] León-Pacheco R, Pérez-Macías M, Fuenmayor-Campos F, et al. (2018) Root quality of four clones on cassava (Manihot esculenta Crantz) as affected by the irrigation regime. Bioagro 30: 87-91.
    [85] García MC, Salcedo MJ, Alvis BA (2018) Condiciones óptimas de la etapa de lixiviación en la extracción de almidón de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial 16: 62-67.
    [86] Sriroth K, Chollakup R, Chotineeranat S, et al. (2000) Processing of cassava waste for improved biomass utilization. Bioresour Technol 71: 63-69.
    [87] Kawano K, Fukuda WMG, Cenpukdee U (1987) Genetic and environmental effects on dry matter content of cassava root. Crop Sci 27: 69-74.
    [88] Gonçalves GD, Nogueira PCJ, Silveira VAE, et al. (2017) Physiological and agronomic characteristics of cassava genotypes. Afr J Agric Res 12: 354-361.
    [89] Kamanda I, Blay ET, Asante IK, et al. (2020) Genetic diversity of provitamin-A cassava (Manihot esculenta Crantz) in Sierra Leone. Genet Resour Crop Evol 67: 1193-1208.
    [90] Karim KY, Ifie B, Dzidzienyo D, et al. (2020) Genetic characterization of cassava (Manihot esculenta Crantz) genotypes using agro-morphological and single nucleotide polymorphism markers. Physiol Mol Biol Plants 26: 317-330.
    [91] Afifi AA, Clark V (1996) Computer Aided Multivariate Analysis. Los Angeles, California, EUA, 330-352.
    [92] Johnson DE (2000) Métodos multivariados aplicados al análisis de datos. International Thomson editors, 556.
    [93] Castillo MLE (2007) Introducción al SAS para Windows. Universidad Autónoma Chapingo (UACH), Estado de México, México, 295.
    [94] Temegne NC, Mouafor BI, Ngome AF (2016) Agro-morphological characterization of cassava (Manihot esculenta Crantz) collected in the humid forest and Guinea savannah agro-ecological zones of Cameroon. Greener J Agric Sci 6: 209-225.
    [95] Tokunaga H, Baba T, Ishitani M, et al. (2018) Sustainable management of invasive cassava pests in Vietnam, Cambodia, and Thailand. In: Kokubun M, Asanuma S (Eds). Crop Production under stressful conditions. Springer, Singapore, 131-157.
    [96] Adetunji AR, Isadare DA, Akinluwade KJ, et al. (2015) Waste-to-wealth applications of cassava- a review study of industrial and agricultural applications. Adv Res 4: 212-229.
    [97] Guira F, Some K, Kabore D, et al. (2017) Origins, production, and utilization of cassava in Burkina Faso, a contribution of a neglected crop to household food security. Food Sci Nutr 5: 415-423.
    [98] Cock JH (2019) Cassava: New potential for a neglected crop. CRC Press, 208.
    [99] Versino F, López OV, García MA (2019) Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos Part B: Eng 182: 107653.
    [100] Phun-iam M, Anusontpornperm S, Thanachit S, et al. (2018) Yield response of cassava Huay Bong 80 variety grown in an oxyaquicpaleustult to cassava starch waste and nitrogen fertilizer. Agric Natur Resour 52: 573-580.
    [101] Apata DF, Babalola TO (2012) The use of cassava, sweet potato and cocoyam, and their by-products by non-ruminants. Int J Food Sci Nutr 2: 54-62.
    [102] Achi CG, Coker AO, Sridhar MKC (2018) Cassava processing wastes: Options and potentials for resource recovery in Nigeria. In: Ghosh S (Eds.), Utilization and management of bioresources. Springer, Singapore, 77-89.
    [103] de Souza Araújo P, da Silva PGP, de Souza AS, et al. (2020) Changes in biochemical composition of cassava and beet residues during solid state bioprocess with Pleurotus ostreatus. Biocatal Agric Biotechnol 26: 101641.
    [104] Marin EM, Zajul M, Goldman M. et al. (2020) Effects of solid-state fermentation and the potential use of cassava by-products as fermented food. Waste Biomass Valor 11: 1289-1299.
    [105] Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renewable Sustainable Energy Rev 70: 793-804.
    [106] Elemike EE, Oseghale OC, Okoye AC (2015) Utilization of cellulosic cassava waste for bio-ethanol production. J Environ Chem Eng 3: 2797-2800.
    [107] Adeleke KM, Itabiyi OE, Ilori OO (2018) Temperature effect on the product yield from pyrolysis of cassava peels. Int J Sci & Eng Res 9: 953.
    [108] Martínez DG, Feiden A, Bariccatt R, et al. (2018) Ethanol production from waste of cassava processing. Appl Sci 8: 2158.
    [109] Sivamani S, Chandrasekaran AP, Balajii M, et al. (2018) Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Biotechnol 17: 553-570.
    [110] Trakulvichean S, Chaiprasert P, Otmakhova J, et al. (2017) Comparison of fermented animal feed and mushroom growth media as two value-added options for waste cassava pulp management. Waste Manage Res 35: 1210-1219.
    [111] Pinheiro KH, Watanabe LS, Nixdorf SL, et al. (2018) Cassava bagasse as a substrate to produce cyclodextrins. Starch‐Stärke 70: 30.
    [112] Polachini TC, Fachin L, Betiol L, et al. (2016) Water adsorption isotherms and thermodynamic properties of cassava bagasse. Thermochim Acta 632: 79-85.
    [113] Versino F, López OV, Garcia MA (2015) Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development. Ind Crops Prod 65: 79-89.
    [114] Teixeira EM, Daniel P, Curvelo AAS, et al. (2009) Cassava bagasse cellulosa nanofibrils reinforced plasticized cassava starch. Carbohydr Polym 78: 422-431.
    [115] Pasquini D, Teixeira EM, Curvelo AAS, et al. (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32: 486-490.
    [116] Á lvarez-Castillo A, García-Hernández E, Domínguez-Domínguez MM, et al. (2012) Aprovechamiento integral de los materiales lignocelulósicos. Revista Iberoamericana de polímeros 13: 140-150.
    [117] Edhirej A, Sapuan SM, Jawaid M, et al. (2017) Cassava: Its polymer, fiber, composite, and application. Polym Compos 38: 555-570.
    [118] Thatoi H, Dash PK, Mohapatra S, et al. (2016) Bioethanol production from tuber crops using fermentation technology: a review. Int J Sustainable Energy 35: 443-468.
    [119] Wangpor J, Prayoonyong P, Sakdaronnarong C, et al. (2017) Bioethanol production from cassava starch by enzymatic hydrolysis, fermentation and ex-situ nanofiltration. Energy Procedia 138: 883-888.
    [120] Candra KP, Murdianto W (2019) Optimization method for the bioethanol production from Giant cassava (Manihot esculenta var. Gajah) originated from east Kalimantan. Indones J Chem 19: 176-182.
    [121] Apata DF, Babalola TO (2012) The use of cassava, sweet potato and cocoyam, and their by-products by non-ruminants. Int J Food Sci Nut 2: 54-62.
    [122] Morgan NK, Choct M (2016) Cassava: Nutrient composition and nutritive value in poultry diets. Anim Nut 2: 253-261.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3781) PDF downloads(179) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog