Research article Special Issues

Viticultural practices in Jumilla (Murcia, Spain): a case study of agriculture and adaptation to natural landscape processes in a variable and changing climate

  • Received: 01 April 2016 Accepted: 17 June 2016 Published: 25 January 2016
  • This study examines viticultural practices near Jumilla (Murcia, SE Spain). It focuses on a site with extensive rock fragment (RF) covers on vineyard soils, their probable origins and the effects surface RF have on vines and soil properties, and also discusses the expected impacts of climate change during the 21st century. Data about vitivinicultural activities, substrates, and vineyard characteristics were obtained through extended interviews and fieldwork during three summer seasons. Vineyards occupy an extensive Quaternary-age, colluvial/alluvial glacis at 650–760 m below Sierra Molar, an Upper-Cretaceous mountain range that supplies white dolomitic limestone and calcareous marl clasts for RF. Regional climate is semiarid; rainfall is 313 mm/year, average temperature is 14.9 °C; a significant seasonal moisture deficit (≥478 mm/year) occurs during hot summers.
    Agricultural crops in the property are exclusively rainfed; no irrigation is utilized. This is facilitated by RF layers, which reach 100% groundcover and ≤30 cm thickness. Rock fragments occur naturally in the soil; RF are not placed on the fields, but accumulate by a combination of downslope transport from mountains by several geomorphic processes, and from agricultural tillage. RF covers show a layered structure; larger RF at the surface rest on a thin horizon of smaller fragments, over a thinner basal layer of even smaller particles lying unconformably on fine earth; this vertical stratification is generated by the sieving effect. The main pedological effects of RF include: improved infiltration and water storage, decreased runoff, lower evaporation rates, soil protection from rainsplash compaction and erosion, lower maximum temperatures, and greater sunlight reflection due to high rock albedo. By the late 21st century, Jumilla may experience higher seasonal temperatures, ~5–7 °C+ during summer, and 3–4 °C+ in winter, and a ~17–36% reduction of annual rainfall; the combination will cause greater evapotranspiration and vine stress. Several possible strategies to minimize the effects of climatic change are discussed.

    Citation: Francisco L. Pérez. Viticultural practices in Jumilla (Murcia, Spain): a case study of agriculture and adaptation to natural landscape processes in a variable and changing climate[J]. AIMS Agriculture and Food, 2016, 1(3): 265-293. doi: 10.3934/agrfood.2016.3.265

    Related Papers:

  • This study examines viticultural practices near Jumilla (Murcia, SE Spain). It focuses on a site with extensive rock fragment (RF) covers on vineyard soils, their probable origins and the effects surface RF have on vines and soil properties, and also discusses the expected impacts of climate change during the 21st century. Data about vitivinicultural activities, substrates, and vineyard characteristics were obtained through extended interviews and fieldwork during three summer seasons. Vineyards occupy an extensive Quaternary-age, colluvial/alluvial glacis at 650–760 m below Sierra Molar, an Upper-Cretaceous mountain range that supplies white dolomitic limestone and calcareous marl clasts for RF. Regional climate is semiarid; rainfall is 313 mm/year, average temperature is 14.9 °C; a significant seasonal moisture deficit (≥478 mm/year) occurs during hot summers.
    Agricultural crops in the property are exclusively rainfed; no irrigation is utilized. This is facilitated by RF layers, which reach 100% groundcover and ≤30 cm thickness. Rock fragments occur naturally in the soil; RF are not placed on the fields, but accumulate by a combination of downslope transport from mountains by several geomorphic processes, and from agricultural tillage. RF covers show a layered structure; larger RF at the surface rest on a thin horizon of smaller fragments, over a thinner basal layer of even smaller particles lying unconformably on fine earth; this vertical stratification is generated by the sieving effect. The main pedological effects of RF include: improved infiltration and water storage, decreased runoff, lower evaporation rates, soil protection from rainsplash compaction and erosion, lower maximum temperatures, and greater sunlight reflection due to high rock albedo. By the late 21st century, Jumilla may experience higher seasonal temperatures, ~5–7 °C+ during summer, and 3–4 °C+ in winter, and a ~17–36% reduction of annual rainfall; the combination will cause greater evapotranspiration and vine stress. Several possible strategies to minimize the effects of climatic change are discussed.


    加载中
    [1] Poesen JW, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23: 1-28. doi: 10.1016/0341-8162(94)90050-7
    [2] Poesen JW, Torri D, Bunte K (1994) Effect of rock fragments on soil erosion by water at different spatial scales: a review. Catena 23: 141-166. doi: 10.1016/0341-8162(94)90058-2
    [3] Pérez FL (2009) Phytogeomorphic influence of stone covers and boulders on plant distribution and slope processes in high-mountain areas. Geogr Compass 3: 1-30. doi: 10.1111/j.1749-8198.2008.00200.x
    [4] Doolittle WE (1998) Innovation and diffusion of sand- and gravel-mulch agriculture in the American Southwest: a product of the eruption of Sunset Crater. Quaternaire 9: 61-69. doi: 10.3406/quate.1998.2107
    [5] Doolittle WE (2000) Cultivated landscapes of native North America. Oxford: Oxford University Press.
    [6] Gale WJ, McColl RW, Fang X (1993) Sandy fields traditional farming for water conservation in China. J Soil Water Conserv 48: 474-477.
    [7] Araña V, López J (1973) Volcanismo. Dinámica y petrología de sus productos. Madrid: Colegio universitario de Ediciones Istmo.
    [8] Tejedor M, Jiménez CC, Díaz F (2003) Volcanic materials as mulches for water conservation. Geoderma 117: 283-295. doi: 10.1016/S0016-7061(03)00129-0
    [9] Tejedor M, Jiménez CC, Díaz F (2004) Dry farming with soils under natural tephra cover in Lanzarote, Spain. Soil Use Manag 20: 360-362. doi: 10.1079/SUM2004268
    [10] Nachtergaele J (1998) Gravel mulching in vineyards of southern Switzerland. Soil Till Res 46: 51-59. doi: 10.1016/S0167-1987(98)80107-4
    [11] Alexander WD (1870) On the crater of Haleakala, island of Maui, Hawaiian group. Am J Sci Arts 49: 43-48.
    [12] Tansley AG (1911) Types of British vegetation. Cambridge: Cambridge University Press.
    [13] Weberbauer A (1911) Die Pflanzenwelt der peruanischen Anden. In: Engler, A, Drude, O. (eds), Die Vegetation der Erde, Vol. 12. Leipzig: Wilhelm Engelmann, 1-355.
    [14] Weaver JE (1919) The ecological relations of roots. Publ Carnegie Inst Washington, Washington DC 286: 1-128.
    [15] Pérez FL (1991) Soil moisture and the distribution of giant Andean rosettes on talus slopes of a desert paramo. Clim Res 1: 217-231. doi: 10.3354/cr001217
    [16] Best E (1976) Maori agriculture. Wellington, New Zealand: AR Shearer.
    [17] Lightfoot DR (1994) Morphology and ecology of lithic-mulch agriculture. Geogr Rev 84: 172-185. doi: 10.2307/215329
    [18] Poesen JW, Lavee H (1997) How efficient were ancient rainwater harvesting systems in the Negev Desert, Israel? Bull Séanc Acad r Sci d’Outre-mer Meded Zitt K Acad oversee wet 43: 405-419.
    [19] Frankel C (2011) Terre de vignes. Paris: Ed du Seuil.
    [20] Huggett JM (2006) Geology and wine: a review. Proc Geol Assoc 117: 239-247. doi: 10.1016/S0016-7878(06)80012-X
    [21] White RE (2015) Understanding vineyard soils, 2nd ed. Oxford: Oxford Univ. Press.
    [22] Robinson J (2003) Jancis Robinson wine course: a guide to the world of wine, 3rd ed. New York: Abbeville Press.
    [23] Krushelnycky PD, Loope LL, Giambelluca TW, et al. (2013) Climate-associated population declines reverse recovery and threaten future of an iconic high-elevation plant. Glob Chang Biol 19: 911-922. doi: 10.1111/gcb.12111
    [24] Krushelnycky PD, Starr F, Starr K, et al. (2016) Change in trade wind inversion frequency implicated in the decline of an alpine plant. Clim Chang Response 3: 1-13. doi: 10.1186/s40665-016-0015-2
    [25] Cao G, Giambelluca TW (2007) Inversion variability in the Hawaiian trade wind regime. J Clim 20: 1145-1160. doi: 10.1175/JCLI4033.1
    [26] Loope LL, Giambelluca TW (1998) Vulnerability of island tropical montane cloud forests to climate change, with special reference to east Maui, Hawaii. Clim Chang 39: 503-517, doi: 10.1023/A:1005372118420
    [27] Giambelluca TW, Díaz HF, Luke MSA (2008) Secular temperature changes in Hawai’i. Geophys Res Lett 35: L12702.
    [28] Ruiz Carrascal D, Arroyave MP, Gutierrez-Lagoueyte ME, et al. (2011) Increased climatic stress on high-Andean ecosystems in the Cordillera Central of Colombia. In: Herzog, S.K., Martínez, R., Jørgensen, P.M., Tiessen, H. (eds), Climate change and biodiversity in the tropical Andes. Inter-Am Inst Glob Chang Res, 182-190.
    [29] Marengo JA, Pabón JD, Díaz A, et al. (2011) Climate change: evidence and future scenarios for the Andean region. In: Herzog, S.K., Martínez, R., Jørgensen, P.M., Tiessen, H. (eds), Climate change and biodiversity in the tropical Andes. Inter-Am Inst Glob Chang Res, 110-127.
    [30] Young B, Young KR, Josse C (2011) Vulnerability of tropical Andean ecosystems to climate change. In: Herzog, S.K., Martínez, R., Jørgensen, P.M., Tiessen, H. (eds), Climate change and biodiversity in the tropical Andes. Inter-Am Inst Glob Chang Res, 170-181.
    [31] Díaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Chang 36: 253-279.
    [32] Hernández-Carrión E (2005) Evolución histórica de los vinos de Jumilla. Rev Murciana Antropol 12: 249-261.
    [33] Atlas Global de la región de Murcia. 2015. Available from: www.atlasdemurcia.com
    [34] Oberlander TM (1989) Slope and pediment systems. In: Thomas, D.S.G. (ed), Arid zone geomorphology. London: Bellhaven, 56-84.
    [35] White K (2006) Glacis d’érosion. In: Goudie, A.S. (ed), Encyclopedia of Geomorphology. London: Routledge, 469-470.
    [36] Instituto Geológico y Minero de España (1981) Mapa Geológico de España, Hoja Jumilla, 2a ser, 1a. edn. Escala 1:50.000. Serv Pub Min Ind Energía.
    [37] ISRIC-FAO (2007) Base referencial mundial del recurso suelo, 2nd ed. Informes sobre recursos mundiales de suelos N° 103, FAO, Roma.
    [38] Castillo VM, Gómez Plaza A, Martínez-Mena M, et al. (2000) Respuesta hidrológica en medios semiáridos: las cuencas experimentales de la Sierra del Picarcho, Murcia (España). Cuad Invest Geogr 26: 81-94.
    [39] Soil Survey Staff (2014) Keys to soil taxonomy, 12th ed. US Department of Agriculture, Nature Resource Conservation Service, Washington DC.
    [40] Albaladejo J, Martínez-Mena M, Roldan A, et al. (1998) Soil degradation and its impact of desertification: a research design for Mediterranean environments. Soil Techn 4: 169-174.
    [41] Rivas-Martínez S, Rivas-Saenz S. Worldwide bioclimatic classification system, phytosociological research center, Spain. 1996-2015. Available from: http://www.globalbioclimatics.org
    [42] Martínez-Carrión JM, Medina-Albaladejo FJ, Ramon-Muñoz JM (2010) La vitivinicultura y la valorización de su patrimonio industrial, cultural y natural. Areas Rev Internac Cienc Soc 29: 148-155.
    [43] Oestreicher A (2005) La filoxera en España. Bases para su estudio y consecuencias socio-económicas en la Región de Murcia. Rev Murciana Antropol 12: 199-208.
    [44] Oestreicher A (1996) La crisis filoxerica en España (estudio comparativo sobre las consecuencias socio-económicas de la Filoxera en algunas regiones vitivinícolas españolas). Hispania LVI/2, 193: 587-622.
    [45] Piqueras Haba J (2005) La Filoxera en España y su difusion espacial: 1878-1926. Cuad Geogr 77: 101-136.
    [46] Poesen JW, van Wesemael B, Govers G, et al. (1997) Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18: 183-197. doi: 10.1016/S0169-555X(96)00025-6
    [47] Poesen JW, van Wesemael B, Bunte K, et al. (1998) Variation of rock fragment cover and size along semiarid hillslopes: a case study from southeast Spain. Geomorphology 23: 323-335. doi: 10.1016/S0169-555X(98)00013-0
    [48] Pérez FL (2012) Biogeomorphical influence of slope processes and sedimentology on vascular talus vegetation in the southern Cascades, California. Geomorphology 138: 29-48. doi: 10.1016/j.geomorph.2011.08.021
    [49] Pérez FL (2015) Biogeomorphic influence of soil depth to bedrock, volcanic ash soils, and surface tephra on silversword distribution, Haleakalā Crater (Maui, Hawai’i). Geomorphology 243: 75-86. doi: 10.1016/j.geomorph.2015.04.029
    [50] Navarro Lozano J, Herrero C, Hernández E, et al. (1989) Jumilla. Excmo Ayuntamiento de Jumilla, Murcia: Ed Evergráficas.
    [51] Albaladejo J, Chisci G, Gabriels D, et al. (1998a) Soil degradation and desertification induced by vegetation removal in a semiarid environment. Soil Use Manag 14: 1-5.
    [52] Albaladejo J (1990) Impact of degradation processes on soil quality in arid Mediterranean environments. In: Rubio, J.L., Rickson, R.J. (eds), Strategies to combat desertification in Mediterranean Europe. Commission of European Communities, Brussels –Luxembourg, 193-215.
    [53] Grove AT, Rackham O (2003) The nature of Mediterranean Europe: an ecological history. New Haven, CT: Yale University Press.
    [54] Carniel P, Scheidegger AE (1974) Morphometry of an alpine scree cone. Riv Ital Geofis 23: 95-100.
    [55] van Steijn H, Bertran P, Francou B, et al. (1995) Models for the genetic and environmental interpretation of stratified slope deposits: a review. Permafr Perigl Proc 6: 125-146. doi: 10.1002/ppp.3430060210
    [56] Pérez FL (1998) Talus fabric, clast morphology, and botanical indicators of slope processes on the Chaos Crags (California Cascades), U.S.A. Géogr Phys Quatern 52: 1-22.
    [57] van Wesemael B, Mulligan M, Poesen JW (2001) Spatial patterns in water use efficiency created by intensive cultivation on semi-arid hillslopes. In: Stott, D.E., Mohtar, R.H., Steinhardt, G.C. (eds), Sustaining the global farm. 10th Int. Soil Conservation Organization Meeting, Purdue University, Indiana, USA, 1128-1133.
    [58] van Wesemael B, Poesen JW, de Figueiredo T (1995) Effects of rock fragments on physical degradation of cultivated soils by rainfall. Soil Till Res 33: 229-250. doi: 10.1016/0167-1987(94)00439-L
    [59] Brakensiek DL, Rawls WJ (1994) Soil containing rock fragments: effects on infiltration. Catena 23: 99-110. doi: 10.1016/0341-8162(94)90056-6
    [60] Wilcox BP, Wood MK, Tromble JM (1988) Factors influencing infiltrability of semiarid mountain slopes. J Range Manag 31: 197-206.
    [61] Pérez FL (1998) Conservation of soil moisture by different stone covers on alpine talus slopes (Lassen, California). Catena 33: 155-177. doi: 10.1016/S0341-8162(98)00091-5
    [62] Dadkhah M, Gifford GF (1980) Influence of vegetation, rock cover, and trampling on infiltration rates and sediment production. Water Resour Bull 16: 979-986. doi: 10.1111/j.1752-1688.1980.tb02537.x
    [63] van Wesemael B, Poesen JW, Kosmas CS et al. (1996) Evaporation from cultivated soils containing rock fragments. J Hydrol 182: 65-82. doi: 10.1016/0022-1694(95)02931-1
    [64] Pérez FL (2009) The role of tephra covers on soil moisture conservation at Haleakala’s crater (Maui, Hawai’i). Catena 76: 191-205. doi: 10.1016/j.catena.2008.11.007
    [65] Kemper WD, Nicks AD, Corey AT (1994) Accumulation of water in soils under gravel and sand mulches. Soil Sci Soc Am J 58: 56-63.
    [66] Yuan C, Lei T, Mao L, et al. (2009). Soil surface evaporation processes under mulches of different sized gravel. Catena 78: 117-121. doi: 10.1016/j.catena.2009.03.002
    [67] Groenevelt P, van Straaten P, Rasiah V, et al. (1989) Modification in evaporation parameters by rock mulches. Soil Tech 2: 279-285. doi: 10.1016/0933-3630(89)90012-3
    [68] Pérez FL (2000) The influence of surface volcaniclastic layers from Haleakala (Maui, Hawaii) on soil water conservation. Catena 38: 301-332. doi: 10.1016/S0341-8162(99)00076-4
    [69] Othieno CO (1980) Effect of mulches on soil water content and water status of tea plants in Kenya. Exp Agric 16: 295-302. doi: 10.1017/S0014479700011054
    [70] Othieno CO, Ahn PM (1980) Effect of mulches on soil temperature and growth of tea plants in Kenya. Exp Agric 16: 287-294. doi: 10.1017/S0014479700011042
    [71] Woldeab A, Assefa A, Yematawork A, et al. (1994) Report on the results of the Ethiopia-Canada Agrogeology Project - Rock Mulch Report (IDRC Project 88-1032. University Guelph, Guelph, Canada, 1-76.
    [72] Dwairi IM (2000) Using volcanic tuff as mulch to reduce moisture stress and increase soil productivity in arid areas. In: Freshwater resources and the rehabilitation of degraded areas in the drylands. Proc N’Djamena, Chad 2000, 60-64.
    [73] Díaz F, Jiménez CC, Tejedor M (2005) Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agric Water Manag 74: 47-55. doi: 10.1016/j.agwat.2004.10.011
    [74] Tejedor M, Jiménez CC, Díaz F (2002) Soil moisture regime changes in tephra-mulched soils: implications for soil taxonomy. Soil Sci Soc Am J 66: 202-206. doi: 10.2136/sssaj2002.2020
    [75] Modaihsh AS, Horton R, Kirkham D (1985) Soil water evaporation suppression by sand mulches. Soil Sci 139: 357-361. doi: 10.1097/00010694-198504000-00010
    [76] Keller M (2015) The Science of Grapevines. Amsterdam: Elsevier.
    [77] Poesen JW, Ingelmo-Sánchez F, Mücher H (1990) The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surf Proc Landf 15: 653-671. doi: 10.1002/esp.3290150707
    [78] Poesen JW, Ingelmo-Sánchez F (1992) Runoff and sediment yield from topsoil with different porosity as affected by rock fragment cover and position. Catena 19: 451-474. doi: 10.1016/0341-8162(92)90044-C
    [79] Fleskens L, Stroosnijder L (2007) Is soil erosion in olive groves as bad as often claimed? Geoderma 141: 260-271. doi: 10.1016/j.geoderma.2007.06.009
    [80] Mehuys GR, Stolzy LH, Lete J (1975) Temperature distributions under stones submitted to a diurnal heat wave. Soil Sci 120: 437-441. doi: 10.1097/00010694-197512000-00005
    [81] Hernández-Moreno JM, Tejedor M, Jiménez CC (2007) Effects of land-use on soil degradation and restoration in the Canary Islands. In: Arnalds, O., Bartoli, F., Buurman, P., Oskarsson, H., Stoops, G., García-Rodeja, E. (eds), Soils of volcanic regions in Europe. Berlin: Springer, 565-579.
    [82] Fairbourn ML (1973) Effect of gravel mulch on crop yields. Agron J 65: 925-928. doi: 10.2134/agronj1973.00021962006500060024x
    [83] Jury WA, Bellantuoni B (1976) Heat and water movement under surface rocks in a field soil: I. Thermal effects. Soil Sci Soc Am J 40: 505-509. doi: 10.2136/sssaj1976.03615995004000040018x
    [84] Larmuth J (1976) Temperatures beneath stones used as daytime retreats by desert animals. J Arid Environ 1: 35-40.
    [85] Munsell Soil Color Charts (1992) New York: Macbeth, Kollmorgen Instruments.
    [86] Tejedor M, Jiménez CC, Díaz F (2003) Use of volcanic mulch to rehabilitate saline-sodic soils. Soil Sci Soc Am J 67: 1856-1861. doi: 10.2136/sssaj2003.1856
    [87] Smart DR, Schwass E, Lakso A, et al. (2006) Grapevine rooting patterns: a comprehensive analysis and review. Am J Enol Vitic 57: 89-104.
    [88] Haynes SJ (1999) Geology and wine 1. Concept of terroir and the role of geology. Geosci Can 26: 190-194.
    [89] Oñate J, Pou A (1996) Temperature variations in Spain since 1901: a preliminary analysis. Int J Clim 16: 805-815.
    [90] de Castro M, Martín-Vide J, Alonso S (2005) The climate of Spain: past, present and scenarios for the 21st century. In: Moreno, J.M. (ed), A preliminary assessment of the impacts in Spain due to the effects of climate change. Madrid: Min Envir, 1-62.
    [91] Resco Sánchez P, Bardají I, Iglesias A, et al. (2014) Vulnerabilidad del viñedo español al cambio climático. In: Castillo, J.S., Compés, R. (eds), La economía del vino en España y el mundo. Serie Economía. Almería, Spain: Cajamar, Caja Rural, 245-267.
    [92] Pérez FF, Boscolo R (eds) (2010) Climate in Spain: past, present and future. Regional climate change assessment report. Red temática Clivar-España.
    [93] Grupo Meteorología de Santander, Proyecto nacional ESCENA. 2009-2012. Available from: www.meteo.unican.es/es/projects/escena
    [94] Horcas R, Rasilla D, Fernández-García F (2001) Temperature variations in the Segura River Basin. An exploratory analysis. In: Brunet, M., López, D. (eds), Detecting and modeling regional climate change. Berlin: Springer, 133-142.
    [95] Malheiro AC, Santos JA, Fraga H, et al. (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43: 163-177. doi: 10.3354/cr00918
    [96] Ramos MC, Jones GV, Martinez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38: 1-15. doi: 10.3354/cr00759
    [97] Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51: 249-261.
    [98] Dobrei A, Nistor E, Sala F, et al. (2015) Tillage practices in the context of climate change and a sustainable viticulture. Not Sci Biol 7: 500-504.
    [99] Webb LB, Whetton PH, Bhend J, et al. (2012) Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat Clim Chang 2: 259-264. doi: 10.1038/nclimate1417
    [100] Laget F, Tondut JL, Deloire A, et al. (2008) Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. J Int Sci Vigne Vin 42: 113-123.
    [101] Webb LB, Whetton PH, Barlow EWR (2011) Observed trends in winegrape maturity in Australia. Glob Change Biol 17: 2707-2719. doi: 10.1111/j.1365-2486.2011.02434.x
    [102] Bindi M, Fibbi L, Gozzini B, et al. (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7: 213-224. doi: 10.3354/cr007213
    [103] Ashenfelter O, Storchmann K (2014) Wine and climate change. Work Pap 152: 1-43.
    [104] Jones GV, Reid R, Vilks A (2012) Climate, grapes, and wine: structure and suitability in a variable and changing climate. In: Dougherty, P.H. (ed), The geography of wine regions, terroir and techniques. Amsterdam: Springer, 109-133.
    [105] Molina JL, García Aróstegui JL, Benavente J, et al. (2009) Aquifers overexploitation in SE Spain: a proposal for the integrated analysis of water management. Water Resour Manag 23: 2737-2760. doi: 10.1007/s11269-009-9406-5
    [106] Andreu M, Alcalá FJ, Vallejos A, et al. (2011) Recharge to mountainous carbonated aquifers in SE Spain: different approaches and new challenges. J Arid Environ 75: 1262-1270. doi: 10.1016/j.jaridenv.2011.01.011
    [107] Rodriguez Estrella T (2006) Hidrogeología de la region de Murcia. In: Conesa García, C (ed), El medio físico de la region de Murcia. Murcia: Serv Publ Univ Murcia, 143-182.
    [108] Morales Yago FJ (2015) El agua en Yecla (Murcia): pasado y futuro de un recurso imprescindible para el desarrollo local. Bolet Asoc Géogr Españ 68: 301-323.
    [109] Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57: 963-974. doi: 10.1007/s00254-008-1381-2
    [110] Jiménez-Fernández P, Jiménez-Gavilán P (2015) Modelling of last hypothesis of climate change impacts on water resources in Sierra de las Cabras aquifer (Southern Spain). In: Andreu, J.M., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., Van Lanen, H.A.J. (eds), Drought: research and science-policy interfacing. London: CRC Press, Taylor & Francis, 57-64.
    [111] Contreras S, Hunink JE (2015) Drought effects on rainfed agriculture using standardized indices: A case study in SE Spain. In: Andreu, J.M., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., Van Lanen, H.A.J. (eds), Drought: research and science-policy interfacing. London: CRC Press, Taylor & Francis, 65-70.
    [112] Agnew CT (2000) Using the SPI to identify drought. Drought Netw News 12: 6-12.
    [113] Kroodsma DA, Field CB (2006) Carbon sequestration in California agriculture, 1980-2000. Ecol Appl 16: 1975-1985.
    [114] Kjelgren R (2010) Isohydric and anisohydric water use. Considerations in species selection for the Great Green Wall of Africa. In: Dia, A, Duponnois, R. (eds), Le projet majeur africain de la Grande Muraille Verte. Paris: IRD ed, 63-72.
    [115] Sade N, Gebremedhin A, Moshelion M (2012) Risk-king plants. Anisohydric behavior as a stress-resistance trait. Plant Signal Behav 7: 767-770.
    [116] Vilagrosa A, Chirino E, Peguero-Pina JJ, et al. (2012) Xylem cavitation and embolism in plants living in water-limited ecosystems. In: Aroca, E. (ed), Plant responses to drought stress. Berlin: Springer, 63-109.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5728) PDF downloads(1492) Cited by(4)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog