-
AIMS Agriculture and Food, 2016, 1(1): 52-66. doi: 10.3934/agrfood.2016.1.52.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
A biorefinery approach for the production of xylitol, ethanol and polyhydroxybutyrate from brewer’s spent grain
1 Department of Industrial Engineering. Universidad Libre, seccional Barranquilla. Cra. 46 No. 48-170, Barranquilla, Colombia
2 Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
3 Instituto de Biotecnología y Agroindustria. Departamento de Ingeniería Química. Universidad Nacional de Colombia sede Manizales. Cra. 27 No. 64-60, Manizales, Colombia
Received: , Accepted: , Published:
Keywords: brewer’s spent grain; biorefinery; fuel ethanol; xylitol; polyhydroxybutyrate; techno-economic and environmental evaluation
Citation: Javier A. Dávila, Moshe Rosenberg, Carlos A. Cardona. A biorefinery approach for the production of xylitol, ethanol and polyhydroxybutyrate from brewer’s spent grain. AIMS Agriculture and Food, 2016, 1(1): 52-66. doi: 10.3934/agrfood.2016.1.52
References:
- 1. Salihu A, Muntari B (2011) Brewer’s spent grain: A review of its potentials and Applications. Afr J Biotechnol 10: 324-331.
-
2. Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci 43: 1-14.
-
3. Niemi P, Faulds CB, Sibakov J, et al. (2012) Effect of a milling pre-treatment on the enzymatic hydrolysis of carbohydrates in brewer’s spent grain. Bioresour Technol 116: 155-160.
- 4. FAO-STAT, Crops processed. 2011. Available from: http://faostat.fao.org/site/636/default.aspx#ancor (Accessed 2 August 2013).
-
5. Meneses NGT, Martins S, Teixeira JA, et al. (2013) Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep Purif Technol 108: 152-158.
-
6. Mussatto SI, Dragone G, Roberto IC (2005) Influence of the toxic compounds present in brewer's spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochem 40: 3801-3806.
-
7. Mussatto SI, Fernandes M, Mancilha IM, et al. (2008) Effects of medium supplementation and pH control on lactic acid production from brewer's spent grain. Biochem Eng J 40: 437-444.
-
8. Mussatto SI, Fernandes M, Rocha GJM, et al. (2010) Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresour Technol 101: 2450-2457.
-
9. Mussatto SI, Roberto IC (2008) Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer's spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem 43: 540-546.
-
10. Quintero JA, Moncada J, Cardona CA (2013) Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach. Bioresour Technol 139: 300-307.
-
11. Posada JA, Rincón LE, Cardona CA (2012) Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem. Bioresour Technol 111: 282-293.
-
12. Naranjo JM, Posada JA, Higuita JC, et al. (2013) Valorization of glycerol through the production of biopolymers: The PHB case using Bacillus megaterium. Bioresour Technol 133: 38-44.
- 13. NIST, Base de Datos de Referencia Estándar del NIST Número 69. 2013. Available from: http://webbook.nist.gov/chemistry/ (Accessed Nov. 2012).
-
14. Moncada J, Tamayo JA, Cardona CA (2014) Techno-economic and environmental assessment of essential oil extraction from Citronella (Cymbopogon winteriana) and Lemongrass (Cymbopogon citrus): A Colombian case to evaluate different extraction technologies. Ind Crop Prod 54: 175-184.
-
15. Moncada J, El-Halwagi MM, Cardona CA (2013) Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresour Technol 135: 533-543.
-
16. Mussatto SI, Roberto IC (2005) Acid hydrolysis and fermentation of brewer's spent grain to produce xylitol. J Sci Food Agr 85: 2453-2460.
-
17. Mussatto SI, Dragone G, Rocha GJM, et al. (2006) Optimum operating conditions for brewer's spent grain soda pulping. Carbohyd Polym 64: 22-28.
-
18. Mussatto SI, Fernandes M, Milagres AMF, et al. (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme Microb Tech 43: 124-129.
-
19. Vyglazov VV (2004) Kinetic Characteristics of Xylitol Crystallization from Aqueous-Ethanolic Solutions. Russ J Appl Chem 77: 26-29.
-
20. Triana CF, Quintero JA, Agudelo RA, et al. (2011) Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production. Energy 36: 4182-4190.
-
21. Shahhosseini S (2004) Simulation and optimisation of PHB production in fed-batch culture of Ralstonia eutropha. Process Biochem 39: 963-969.
-
22. Ahmed II, Gupta AK (2012) Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution. Appl Energ 91: 75-81.
-
23. Balat M, Balat M, Kırtay E, et al. (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energ Convers Manage 50: 3147-3157.
-
24. Mussatto SI, Moncada J, Roberto IC, et al. (2013) Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresour Technol 148: 302-310.
- 25. ICIS, Indicative Chemical Prices A-Z. 2013. Available from: http://www.icis.com/chemicals/channel-info-chemicals-a-z/. (Accessed 25/07/2013).
- 26. ALIBABA, International Prices. 2013. Available from: http://www.alibaba.com.
- 27. NME, Nueva Mineria y Energia. 27 May 2013. 2013. Available from: http://www.nuevamineria.com/revista/2013/05/27/lyd-considera-arriesgado-plantear-desarrollo-energetico-basado-unicamente-en-shale-gas/. (Accessed 05/08/2013).
- 28. Fedebiocombustibles, Indicadores. Ethanol price. 2013. Available from: http://www.fedebiocombustibles.com/v3/(Accessed Nov 2013).
-
29. Moncada J, Cardona CA, Rincón LE (2015) Design and analysis of a second and third generation biorefinery: The case of castorbean and microalgae. Bioresour Technol 198: 836-843.
- 30. Rincón L, Cardona CA (2014) Techno-Economic Analysis of the Use of Fired Cogeneration Systems Based on Sugar Cane Bagasse in South Eastern and Mid-Western Regions of Mexico. Waste Biomass Valoriz 5: 189-198.
-
31. Naranjo JM, Cardona CA, Higuita JC (2014) Use of residual banana for polyhydroxybutyrate (PHB) production: Case of study in an integrated biorefinery. Waste Manag 34: 2634-2640.
- 32. Balat, M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ Convers Manag 52: 858-875.
-
33. Piarpuzán D, Quintero JA, Cardona CA (2011) Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass Bioenerg 35: 1130-1137.
This article has been cited by:
- 1. Wojciech Łaba, Michał Piegza, Joanna Kawa-Rygielska, Evaluation of brewer's spent grain as a substrate for production of hydrolytic enzymes by keratinolytic bacteria, Journal of Chemical Technology & Biotechnology, 2016, 10.1002/jctb.5134
- 2. Carlos Ariel Cardona Alzate, Juan Camilo Solarte Toro, Álvaro Gómez Peña, Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries, Catalysis Today, 2017, 10.1016/j.cattod.2017.09.034
- 3. Richa Arora, Nilesh K. Sharma, Sachin Kumar, , Advances in Sugarcane Biorefinery, 2018, 163, 10.1016/B978-0-12-804534-3.00008-2
- 4. Lene Lange, Anne S. Meyer, Potentials and possible safety issues of using biorefinery products in food value chains, Trends in Food Science & Technology, 2018, 10.1016/j.tifs.2018.08.016
- 5. H.M. Raoul Özüdoğru, M. Nieder-Heitmann, K.F. Haigh, J.F. Görgens, Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production, Industrial Crops and Products, 2019, 133, 259, 10.1016/j.indcrop.2019.03.015
- 6. M. H. Haddadi, R. Asadolahi, B. Negahdari, The bioextraction of bioplastics with focus on polyhydroxybutyrate: a review, International Journal of Environmental Science and Technology, 2019, 10.1007/s13762-019-02352-0
- 7. Xuebing Zhao, Dehua Liu, Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining, Applied Energy, 2019, 250, 229, 10.1016/j.apenergy.2019.05.045
- 8. Andrés Alfonso Gil Montenegro, Juan Sebastian Arocha Morales, Lilia Carolina Rojas Pérez, Paulo César Narváez Rincón, Process simulation for xylitol production from brewer’s spent grain in a Colombian biorefinery. Part 1: Xylose production from arabinoxilans extracted by the alkaline pretreatment of BSG, Ingeniería e Investigación, 2019, 39, 1, 10.15446/ing.investig.v39n1.70080
Reader Comments
Copyright Info: 2016, Javier A. Dávila, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *