
Quantitative Finance and Economics, 2020, 4(1): 148171. doi: 10.3934/QFE.2020007
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Extension of SABR Libor Market Model to handle negative interest rates
Corporate Model Risk, Wells Fargo, 1753 Pinnacle Dr, Fl 6, Mc Lean, VA 22102, USA
Received: , Accepted: , Published:
References
1. Anderson L, Andreason J (2000) Volatility skews and extensions of the libor market model. Appl Math Financ 7: 132.
2. Antonov A, Konikov M, Spector M (2015) The free boundary SABR: Natural extension to negative rates. Risk.
3. Balland P, Tran Q (2013) SABR goes normal. Risk, 7681.
4. Brace A (1997) The market model of interest rate dynamics. Math Financ 7: 127147.
5. Brigo D, Mercurio F (2006) Interest Rate ModelsTheory and Practice, Springer, New York.
6. Chesney M, Yor M, Jeanblanc M (2009) Mathematical Methods for Financial Markets, Springer, United Kingdom.
7. Ferreiro A, GarcíaRodríguez J, LópezSalas J, et al. (2014) SABR/LIBOR market models: Pricing and calibration for some interest rate derivatives. Appl Math Comput 242: 6589.
8. Hagan P, Kumar D, Lesniewski A, et al. (2002) Managing smile risk. Wilmott Mag, 84108.
9. HenryLabordere P (2007) Unifying the BGM and SABR models: A short ride in hyperbolic geometry. SSRN. Available from: https://ssrn.com/abstract=877762 or http://dx.doi.org/10.2139/ssrn.877762.
10. Honda Y, Inoue J (2019) The effectiveness of the negative interest rate policy in Japan: An early assessment. J Japanese Int Econ 52: 142153.
11. Joshi M, Rebonato R (2003) A stochasticvolatility displaceddiffusion extension of the LIBOR market model. Quant Financ 3: 458469.
12. Kienitz J (2015) Approximate and PDE solution to the boundary free SABR modelapplication to pricing and calibration. Working Paper.
13. LeFloch F, Kennedy G (2013) Finite difference techniques for arbitrage free SABR. Working Paper.
14. LópezSalas J, Vázquez C (2018) PDE formulation of some SABR/LIBOR market models and its numerical solution with a sparse grid combination technique. Comput Math Applications 75: 16161634.
15. Morini M, Mercurio F (2007) Noarbitrage dynamics for a tractable SABR term structure LIBOR model. Bloomberg Portfolio Res Pap.
16. Pedersen H, Swanson N (2019) A survey of dynamic NelsonSiegel models, diffusion indexes, and big data methods for predicting interest rates. Quant Financ Econ 3: 2245.
17. Piterbarg V (2003) A stochastic volatility forward LIBOR model with a term structure of volatility smiles. Appl Math Financ 12: 147185.
18. Rebonato R (2002) Modern pricing of interestrate derivatives, Princeton University Press.
19. Rebonato R (2007) A timehomogeneous, SABRconsistent extension of the LMM: calibration and numerical results. Risk.
20. Rebonato R, McKay K, White R (2009) The SABR/LIBOR Market Mode: Pricing, Calibration and Hedging for Complex InterestRate Derivertives, Wiley, United Kingdom.
21. Schoenmakers J, Coeffey B (2000) Stable implied calibration of a multifactor LIBOR model via a semiparametric correlation structure. WIAS Working Paper.
22. Wu L, Zhang F (2006) LIBOR market model with stochastic volatility. J Ind Manage Optim 2: 199227.
23. Zhu J (2007) An extended LIBOR market model with nested stochastic volatility dynamics. Available at SSRN 955352.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)