Citation: Dai Mitsushima. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons[J]. AIMS Neuroscience, 2015, 2(1): 7-17. doi: 10.3934/Neuroscience.2015.1.7
[1] |
Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurology, Neurosurgery and Psychiatry 20: 11-21. doi: 10.1136/jnnp.20.1.11
![]() |
[2] |
Wills TJ, Cacucci F, Burgess N, et al. (2010) Development of the hippocampal cognitive map in preweanling rats. Science 328: 1573-1576. doi: 10.1126/science.1188224
![]() |
[3] | Mitsushima D, Takase K, Funabashi T, et al. (2009) Gonadal steroids maintain 24-h acetylcholine release in the hippocampus: organizational and activational effects in behaving rats. J Neurosci 29:3808–3815. |
[4] |
Chen G, Wang LP, Tsien JZ (2009) Neural population-level memory traces in the mouse hippocampus. PLoS ONE 4: e8256. doi: 10.1371/journal.pone.0008256
![]() |
[5] |
Gelbard-Sagiv H, Mukamel R, Harel M, et al. (2008) Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322: 96-101. doi: 10.1126/science.1164685
![]() |
[6] | Morris RGM, Anderson E, Lynch GS, et al. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature319: 774-776. |
[7] |
Bliss TVP, Làmo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331-356. doi: 10.1113/jphysiol.1973.sp010273
![]() |
[8] |
Whitlock JR, Heynen AJ, Shuler MG, B et al. (2006) Learning induces long-term potentiation in the hippocampus. Science 313: 1093-1097. doi: 10.1126/science.1128134
![]() |
[9] |
Mitsushima D, Ishihara K, Sano A, et al. (2011) Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Proc Natl Acad Sci USA 108: 12503-12508. doi: 10.1073/pnas.1104558108
![]() |
[10] |
Fisahn A, Pike FG, Buhl EH, et al. (1998) Cholinergic induction of networkoscillations at 40Hz in the hippocampus in vitro. Nature 394: 186-189. doi: 10.1038/28179
![]() |
[11] |
Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492: 479-493. doi: 10.1113/jphysiol.1996.sp021323
![]() |
[12] | Mitsushima D, Sano A, Takahashi T (2013) A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun 4:2760. |
[13] |
Okada D, Ozawa F, Inokuchi K (2009) Input-specific spine entry of soma-derived Vesl-1S protein conforms to synaptic tagging. Science 324: 904-909. doi: 10.1126/science.1171498
![]() |
[14] |
Lesburguères E, Gobbo OL, Alaux-Cantin S, et al. (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331: 924-928. doi: 10.1126/science.1196164
![]() |
[15] |
Ragozzino ME, Unick KE, Gold PE (1996) Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc Natl Acad Sci USA 93: 4693-4698. doi: 10.1073/pnas.93.10.4693
![]() |
[16] |
Stancampiano R, Cocco S, Cugusi C, et al. (1999) Serotonin and acetylcholine release response in the rat hippocampus during a spatial memory task. Neuroscience 89: 1135-1143. doi: 10.1016/S0306-4522(98)00397-2
![]() |
[17] |
Hironaka N, Tanaka K, Izaki Y, et al. (2001) Memory-related acetylcholine efflux from the rat prefrontal cortex and hippocampus: a microdialysis study. Brain Res 901: 143-150. doi: 10.1016/S0006-8993(01)02338-1
![]() |
[18] |
Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80: 194-210. doi: 10.1016/j.nlm.2003.07.003
![]() |
[19] |
Parent MB, Baxter MG (2004) Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 11: 9-20. doi: 10.1101/lm.69104
![]() |
[20] |
Herrera-Morales W, Mar I, Serrano B, et al. (2007) Activation of hippocampal postsynaptic muscarinic receptors is involved in long-term spatial memory formation. Eur J Neurosci 25:1581-1588. doi: 10.1111/j.1460-9568.2007.05391.x
![]() |
[21] |
Lee MG, Chrobak JJ, Sik A, et al. (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62: 1033-1047. doi: 10.1016/0306-4522(94)90341-7
![]() |
[22] | Hyman JM, Wyble BP, Goyal V, et al. (2003) Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23: 11725-11731. |
[23] |
Seeger T, Fedorova I, Zheng F, et al. (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24: 10117-10127. doi: 10.1523/JNEUROSCI.3581-04.2004
![]() |
[24] |
Shinoe T, Matsui M, Taketo MM, et al. (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci 25: 11194-11200. doi: 10.1523/JNEUROSCI.2338-05.2005
![]() |
[25] |
Cole AE, Nicoll RA (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221: 1299-1301. doi: 10.1126/science.6612345
![]() |
[26] |
Markram H, Segal M (1990) Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. J Physiol 427: 381-393. doi: 10.1113/jphysiol.1990.sp018177
![]() |
[27] |
Widmer H, Ferrigan L, Davies CH, et al. (2006) Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons. Hippocampus 16: 617-628. doi: 10.1002/hipo.20191
![]() |
[28] |
Fernández de Sevilla D, Núñez A, Borde M, et al. (2008) Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J Neurosci 28:1469-1478. doi: 10.1523/JNEUROSCI.2723-07.2008
![]() |
[29] |
Imayoshi I, Sakamoto M, Ohtsuka T, et al. (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11: 1153-1161. doi: 10.1038/nn.2185
![]() |
[30] |
Mohapel P, Leanza G, Kokaia M, et al. (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26: 939-946. doi: 10.1016/j.neurobiolaging.2004.07.015
![]() |
[31] |
Kotani S, Yamauchi T, Teramoto T, et al. (2006) Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience 142: 505-514. doi: 10.1016/j.neuroscience.2006.06.035
![]() |
[32] |
Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10: 1185-1201. doi: 10.1016/0306-4522(83)90108-2
![]() |
[33] |
Perry E, Walker M, Grace J, et al. (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trend Neurosci 22: 273-280. doi: 10.1016/S0166-2236(98)01361-7
![]() |
[34] |
Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Neurosci 6: 48-56. doi: 10.1038/nrn1588
![]() |
[35] | Mitsushima D, Takahashi T (2011) Contextual learning requires synaptic AMPA receptor delivery in the hippocampus: effect of delivery blocking in behaving rats. Cold Spring Harbor Laboratory Abstr, Synapses: from molecules to circuits & behavior 90. |
[36] | Taniguchi H, Ishikawa J, Mitsushima D (2014) Real-time change in the firing rate of hippocampal CA1 neurons before, during, and after the exposure to a specific episode. J Physiol Sci 64: S244. |
[37] | Mizuno J, Mitsushima D (2013) A possible location of contextual memory: CA1 subfield and laterality of learning-dependent synaptic delivery of AMPA receptors. Soc Neurosci Abstr862.12. |
[38] | Mizuno J, Sakimoto Y, Kida H, et al. (2014) Learning-dependent synaptic plasticity at CA1 synapses: laterality and a possible location of contextual memory in the hippocampus. Soc Neurosci Abstr 754.11. |
[39] | Sakimoto Y, Mitsushima D (2014) Learning-dependent synaptic diversity in hippocampal CA1 neurons: encoding of context but not retrieval induces rapid plasticity at excitatory and inhibitory synapses. Soc Neurosci Abstr 754.07. |
[40] | Takase K, Sakimoto Y, Kimura F, et al. (2014) Developmental trajectory of contextual learning and 24-h acetylcholine release in the hippocampus. Sci Rep 4: 3738. |
[41] |
Coyle JT, Price DL, DeLong MR (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219: 1184-1190. doi: 10.1126/science.6338589
![]() |
[42] |
Ferri CP, Prince M, Brayne C, et al. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366: 2112-2117. doi: 10.1016/S0140-6736(05)67889-0
![]() |
[43] |
Mount C, Downtown D (2006) Alzheimer disease: progress or profit? Nat Med 12:780-784. doi: 10.1038/nm0706-780
![]() |
[44] |
Cummings JL (2004) Alzheimer's disease. New Engl J Med, 351: 56-67. doi: 10.1056/NEJMra040223
![]() |
[45] |
McCurry SM, Logsdon RG, Vitiello MV, et al. (2004) Treatment of sleep and nighttime disturbances in Alzheimer's disease: a behavior management approach. Sleep Med 5: 373-377. doi: 10.1016/j.sleep.2003.11.003
![]() |
[46] |
Starkstein SE, Jorge R, Mizrahi R, et al. (2005) The construct of minor and major depression in Alzheimer's disease. Am J Psychiatry 162: 2086-2093. doi: 10.1176/appi.ajp.162.11.2086
![]() |
[47] |
Petersen RC, Thomas RG, Grundman M, et al. (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. New Engl J Med 352: 2379-2388. doi: 10.1056/NEJMoa050151
![]() |
[48] |
Winblad B, Kilander L, Eriksson S, et al. (2006) Donepezil in patients with severe Alzheimer’s disease: double-blind, parallel-group, placebo-controlled study. Lancet 367: 1057-1065. doi: 10.1016/S0140-6736(06)68350-5
![]() |
[49] | Mitsushima D, Takase K, Funabashi T, et al. (2008) Gonadal steroid hormones maintain the stress-induced acetylcholine release in the hippocampus: simultaneous measurements of the extracellular acetylcholine and serum corticosterone levels in the same subjects. Endocrinology149: 802-811. |