Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Relating Cortical Wave Dynamics to Learning and Remembering

Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA

Special Issues: What hypotheses can be supported as alternatives (or parallels) to synaptic plasticity as substrates for learning and consolidation of memory in the brain?

Electrical waves propagate across sensory and motor cortices in stereotypical patterns. These waves have been described as potentially facilitating sensory processing when they travel through sensory cortex, as guiding movement preparation and performance when they travel across motor cortex, and as possibly promoting synaptic plasticity and the consolidation of memory traces, especially during sleep. Here, an alternative theoretical framework is suggested that integrates Pavlovian hypotheses about learning and cortical function with concepts from contemporary proceduralist theories of memory. The proposed framework postulates that sensory-evoked cortical waves are gradually modified across repeated experiences such that the waves more effectively differentiate sensory events, and so that the waves are more likely to reverberate. It is argued that the qualities of cortical waves—their origins, form, intensity, speed, periodicity, extent, and trajectories —are a function of both the structural organization of neural circuits and ongoing reverberations resulting from previously experienced events. It is hypothesized that experience-dependent cortical plasticity, both in the short- and long-term, modulates the qualities of cortical waves, thereby enabling individuals to make progressively more precise distinctions between complex sensory events, and to reconstruct components of previously experienced events. Unlike most current neurobiological theories of learning and memory mechanisms, this hypothesis does not assume that synaptic plasticity, or any other form of neural plasticity, serves to store physical records of previously experienced events for later reactivation. Rather, the reorganization of cortical circuits may alter the potential for certain wave patterns to arise and persist. Understanding what factors determine the spatiotemporal dynamics of cortical waves, how structural changes affect their qualities, and how wave dynamics relate to both mental experiences and memory-based performances, may provide new insights into the nature of learning and memory.
  Article Metrics

Keywords conditioned response; cortical reorganization; forgetting; learning-induced plasticity; retrieval; stimulus generalization; temporal dynamics

Citation: Eduardo Mercado III. Relating Cortical Wave Dynamics to Learning and Remembering. AIMS Neuroscience, 2014, 1(3): 185-209. doi: 10.3934/Neuroscience.2014.3.185


  • 1. Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: Encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369: 20130288.
  • 2. Gallistel CR, Matzel LD (2013) The neuroscience of learning: Beyond the Hebbian synapse. Annu Rev Psychol 64: 169-200.    
  • 3. Gallistel CR, Balsam PD (2014) Time to rethink the neural mechanisms of learning and memory. Neurobiol Learn Mem 108: 136-144.    
  • 4. Gallistel CR, King AP (2009) Memory and the computational brain: Why cognitive science will transform neuroscience. Chichester, UK: Wiley-Blackwell.
  • 5. Lynch G, Baudry M (1984) The biochemistry of memory: A new and specific hypothesis. Science 224: 1057-1063.    
  • 6. Baudry M, Bi X, Gall C, Lynch G (2011) The biochemistry of memory: The 26 year journey of a 'new and specific hypothesis'. Neurobiol Learn Mem 95: 125-133.    
  • 7. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: A critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70: 589-596.    
  • 8. Buzsaki G (2010) Neural syntax: Cell assemblies, synapsembles, and readers. Neuron 68:362-385.    
  • 9. Pavlov IP (1927) Conditioned reflexes. London: Oxford University Press.
  • 10. Frostig RD, Xiong Y, Chen-Bee CH, et al. (2008) Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads. J Neurosci 28: 13274-13284.    
  • 11. Sechenov I (1965) Reflexes of the brain. Cambridge: MIT Press.
  • 12. Sherrington CS (1906) The integrative action of the nervous system. New Haven: Yale University Press.
  • 13. Jennings HS (1962) Behavior of the lower organisms. Bloomington: Indiana University Press.
  • 14. Spence KW (1937) The differential response in animals to stimuli varying within a single dimension. Psychol Rev 44: 430-444.    
  • 15. Guthrie ER (1934) Discussion: Pavlov's theory of conditioning. Psychol Rev 41: 199-206.    
  • 16. Wenger MA (1937) A criticism of Pavlov's concept of internal inhibition. Psychol Rev 44:297-312.    
  • 17. Lashley KS, Wade M (1946) The Pavlovian theory of generalization. Psychol Rev 53: 72-87.    
  • 18. Denny-Brown D (1932) Critical review: Theoretical deductions from the physiology of the cerebral cortex. J Neurol Psychopathol 13: 52-67.
  • 19. Loucks RB (1937) Reflexology and the psychobiological approach. Psychol Rev 44: 320-338.    
  • 20. Razran G (1949) Stimulus generalization of conditioned responses. Psychol Bull 46: 337-365.    
  • 21. Hebb DO (1949) The organization of behavior. New York: Wiley.
  • 22. James W (1890) The principles of psychology. New York: Dover.
  • 24. Hughes JR, Ikram A, Fino JJ (1995). Characteristics of travelling waves under various conditions. Clin Electroencephalogr 26: 7-22.    
  • 25. Hughes JR (1995) The phenomenon of travelling waves: A review. Clin Electroencephalogr 26:1-6.    
  • 26. Amzica F, Steriade M (1995) Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. J Neurophysiol 73: 20-38.
  • 27. Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford: Oxford University Press.
  • 28. Massimini M, Huber R, Ferrarelli F, et al. (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24: 6862-6870.    
  • 29. Bahramisharif A, van Gerven MA, Aarnoutse EJ, et al. (2013) Propagating neocortical gamma bursts are coordinated by traveling alpha waves. J Neurosci 33: 18849-18854.    
  • 30. Patten TM, Rennie CJ, Robinson PA, et al. (2012) Human cortical traveling waves: Dynamical properties and correlations with responses. PLoS One 7: e38392.    
  • 31. Burkitt GR, Silberstein RB, Cadusch PJ, et al. (2000) Steady-state visual evoked potentials and travelling waves. Clin Neurophysiol 111: 246-258.    
  • 32. Pietrobon D, Moskowitz MA (2014) Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 15: 379-393.
  • 33. Kaiser D (2013) Infralow frequencies and ultradian rhythms. Semin Pediatr Neurol 20:242-245.    
  • 34. Muller L, Destexhe A (2012) Propagating waves in thalamus, cortex and the thalamocortical system: Experiments and models. J Physiol Paris 106: 222-238.    
  • 35. Sato TK, Nauhaus I, Carandini M (2012) Traveling waves in visual cortex. Neuron 75: 218-229.    
  • 36. Wu J-Y, Huang X, Zhang C (2008) Propagating waves of activity in the neocortex: What they are, what they do. Neuroscientist 14: 487-502.
  • 37. Cowey A (1964) Projection of the retina on to striate prestriate cortex in the squirrel monkey, Saimiri scireus. J Neurophysiol 27: 366-393.
  • 38. Grinvald A, Lieke EE, Frostig RD, et al. (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14: 2545-2568.
  • 39. Horikawa J, Hosokawa Y, Kubota M, et al. (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. J Physiol 497: 629-638.    
  • 40. Kubota M, Sugimoto S, Horikawa J, et al. (1997) Optical imaging of dynamic horizontal spread of excitation in rat auditory cortex slices. Neurosci Lett 237: 77-80.    
  • 41. Horikawa J, Hess A, Nasu M, et al. (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12: 3335-3339.    
  • 42. Kubota M, Sugimoto S, Horikawa J (2008) Dynamic spatiotemporal inhibition in the guinea pig auditory cortex. Neuroreport 19: 1691-1694.    
  • 43. Kubota M, Miyamoto A, Hosokawa Y, et al. (2012) Spatiotemporal dynamics of neural activity related to auditory induction in the core and belt fields of guinea-pig auditory cortex. Neuroreport 23: 474-478.    
  • 44. Grinvald A, Hildesheim R (2004) VSDI: A new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5: 874-885.    
  • 45. Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: Technique review and models. J Physiol Paris 104: 40-50.    
  • 46. Mohajerani MH, McVea DA, Fingas M, et al. (2010) Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci 30: 3745-3751.    
  • 47. Morales-Botello ML, Aguilar J, Foffani G (2012) Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws. PLoS One 7: e40174.    
  • 48. Ferezou I, Bolea S, Petersen CC (2006) Visualizing the cortical representation of whisker touch: Voltage-sensitive dye imaging in freely moving mice. Neuron 50: 617-629.    
  • 49. Ferezou I, Haiss F, Gentet LJ, et al. (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56: 907-923.    
  • 50. Benucci A, Frazor RA, Carandini M (2007) Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55: 103-117.    
  • 51. Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55: 119-129.    
  • 52. Huang X, Xu W, Liang J, et al. (2010) Spiral wave dynamics in neocortex. Neuron 68: 978-990.    
  • 53. Rubino D, Robbins KA, Hatsopoulos NG (2006) Propagating waves mediate information transfer in the motor cortex. Nat Neurosci 9: 1549-1557.    
  • 54. Wanger T, Takagaki K, Lippert MT, et al. (2013) Wave propagation of cortical population activity under urethane anesthesia is state dependent. BMC Neurosci 14: 78.    
  • 55. Roland PE, Hanazawa A, Undeman C, et al. (2006) Cortical feedback depolarization waves: A mechanism of top-down influence on early visual areas. Proc Natl Acad Sci U S A 103:12586-12591.    
  • 56. Muller L, Reynaud A, Chavane F, et al. (2014) The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun 5: 3675.
  • 57. Mohajerani MH, Chan AW, Mohsenvand M, et al. (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16: 1426-1435.    
  • 58. Land R, Engler G, Kral A, et al. (2012) Auditory evoked bursts in mouse visual cortex during isoflurane anesthesia. PLoS One 7: e49855.    
  • 59. Reimer A, Hubka P, Engel AK, et al. (2011) Fast propagating waves within the rodent auditory cortex. Cereb Cortex 21: 166-177.    
  • 60. Han F, Caporale N, Dan Y (2008) Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60: 321-327.    
  • 61. Kral A, Tillein J, Hubka P, et al. (2009) Spatiotemporal patterns of cortical activity with bilateral cochlear implants in congenital deafness. J Neurosci 29: 811-827.    
  • 62. Berger T, Borgdorff A, Crochet S, et al. (2007) Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiol 97: 3751-3762.    
  • 63. Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron 29: 33-44.    
  • 64. Ermentrout B, Wang JW, Flores J, et al. (2001) Model for olfactory discrimination and learning in Limax procerebrum incorporating oscillatory dynamics and wave propagation. J Neurophysiol 85: 1444-1452.
  • 65. Kilpatrick ZP, Ermentrout B (2012) Response of traveling waves to transient inputs in neural fields. Phys Rev E Stat Nonlin Soft Matter Phys 85: 021910.    
  • 66. Heitmann S, Boonstra T, Breakspear M (2013) A dendritic mechanism for decoding traveling waves: Principles and applications to motor cortex. PLoS Comput Biol 9: e1003260.    
  • 67. Nenadic Z, Ghosh BK, Ulinski P (2003) Propagating waves in visual cortex: A large-scale model of turtle visual cortex. J Comput Neurosci 14: 161-184.    
  • 68. Wang W, Campaigne C, Ghosh BK, et al. (2005) Two cortical circuits control propagating waves in visual cortex. J Comput Neurosci 19: 263-289.    
  • 69. Frohlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67: 129-143.    
  • 70. Silver MA, Shenhav A, D'Esposito M (2008) Cholinergic enhancement reduces spatial spread of visual responses in human early visual cortex. Neuron 60: 904-914.    
  • 71. Meister M, Wong RO, Baylor DA, et al. (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science: 939-943.
  • 72. Buzsaki G (2011) Rhythms of the brain. New York: Oxford University Press.
  • 73. Blake DT, Strata F, Churchland AK, et al. (2002) Neural correlates of instrumental learning in primary auditory cortex. Proc Natl Acad Sci USA 99: 10114-10119.    
  • 74. Blake DT, Strata F, Kempter R, et al. (2005) Experience-dependent plasticity in S1 caused by noncoincident inputs. J Neurophysiol 94: 2239-2250.    
  • 75. Blake DT, Heiser MA, Caywood M, et al. (2006) Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron 52: 371-381.    
  • 76. Spingath EY, Kang HS, Plummer T, et al. (2011) Different neuroplasticity for task targets and distractors. PLoS One 6: e15342.    
  • 77. Spingath E, Kang HS, Blake DT (2013) Task-dependent modulation of SI physiological responses to targets and distractors. J Neurophysiol 109: 1036-1044.    
  • 78. Gonzalez-Lima F, Scheich H (1986) Classical conditioning of tone-signaled bradycardia modifies 2-deoxyglucose uptake patterns in cortex, thalamus, habenula, caudate-putamen and hippocampal formation. Brain Res 363: 239-256.    
  • 79. Hayes DJ, Duncan NW, Xu J, et al. (2014) A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 45: 350-368.    
  • 80. Cybulska-Klosowicz A, Zakrzewska R, Kossut M (2009) Brain activation patterns during classical conditioning with appetitive or aversive UCS. Behav Brain Res 204: 102-111.    
  • 81. McIntosh AR, Gonzalez-Lima F (1993) Network analysis of functional auditory pathways mapped with fluorodeoxyglucose: Associative effects of a tone conditioned as a Pavlovian excitor or inhibitor. Brain Res 627: 129-140.    
  • 82. Linden JF, Liu RC, Sahani M, et al. (2003) Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. J Neurophysiol 90: 2660-2675.    
  • 83. David SV, Fritz JB, Shamma SA (2012) Task reward structure shapes rapid receptive field plasticity in auditory cortex. Proc Natl Acad Sci U S A 109: 2144-2149.    
  • 84. Yin P, Fritz JB, Shamma SA (2014) Rapid spectrotemporal plasticity in primary auditory cortex during behavior. J Neurosci 34: 4396-4408.    
  • 85. deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280: 1439-1443.    
  • 86. Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535-4545.    
  • 87. Wester JC, Contreras D (2012) Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J Neurosci 32: 5454-5471.    
  • 88. O'Reilly RC (2001) Generalization in interactive networks: The benefits of inhibitory competition and Hebbian learning. Neural Comput 13: 11991-11241.
  • 89. Swindale NV (2004) How different feature spaces may be represented in cortical maps. Network: Comput Neural Syst 15: 217-242.    
  • 90. Roux L, Buzsaki G (2014) Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology.
  • 91. Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90: 415-430.
  • 92. Orduña I, Mercado E, III, Gluck MA, et al. (2005) Cortical responses in rats predict perceptual sensitivities to complex sounds. Behav Neurosci 119: 256-264.    
  • 93. Engineer CT, Perez CA, Chen YH, et al. (2008) Cortical activity patterns predict speech discrimination ability. Nat Neurosci 11: 603-608.    
  • 94. Engineer CT, Perez CA, Carraway RS, et al. (2013) Similarity of cortical activity patterns predicts generalization behavior. PLoS One 8: e78607.    
  • 95. McLin DE, III, Miasnikov AA, Weinberger NM (2003) CS-specific gamma, theta, and alpha EEG activity detected in stimulus generalization following induction of behavioral memory by stimulation of the nucleus basalis. Neurobiol Learn Mem 79: 152-176.    
  • 96. Thompson RF (1965) The neural basis of stimulus generalization. In: Mostofsky DI, editor. Stimulus generalization. Stanford: Stanford University Press, 154-178.
  • 97. Mercado E, III, Orduña I, Nowak JM (2005) Auditory categorization of complex sounds by rats (Rattus norvegicus). J Comp Psychol 119: 90-98.    
  • 98. Weisman RG, Njegovan MG, Williams MT, et al. (2004). A behavior analysis of absolute pitch: Sex, experience, and species. Behav Processes 66: 289-307.    
  • 99. Wisniewski MG, Church BA, Mercado E, III (2009) Learning-related shifts in generalization gradients for complex sounds. Learn Behav 37: 325-335.    
  • 100. Wisniewski MG, Church BA, Mercado E, III (2014) Individual differences during acquisition predict shifts in generalization. Behav Processes 104: 26-34.    
  • 101. Church BA, Mercado E, III, Wisniewski MG, et al (2013) Temporal dynamics in auditory perceptual learning: Impact of sequencing and incidental learning. J Exp Psychol Learn Mem Cogn 39: 270-276.    
  • 102. Liu EH, Mercado E, III, Church BA, et al. (2008) The easy-to-hard effect in human (Homo sapiens) and rat (Rattus norvegicus) auditory identification. J Comp Psychol 122: 132-145.    
  • 103. Schreiner CE, Polley DB (2014) Auditory map plasticity: Diversity in causes and consequences. Curr Opin Neurobiol 24: 143-156.    
  • 104. Mercado E, III (2008) Neural and cognitive plasticity: From maps to minds. Psychol Bull 134:109-137.    
  • 105. Mercado E, III (2011) Mapping individual variations in learning capacity. Int J Comp Psychol24: 4-35.
  • 106. Ghirlanda S, Enquist M (2003) A century of generalization. Anim Behav 66: 15-36.    
  • 107. McLaren IP, Mackintosh NJ (2002) Associative learning and elemental representation: II. Generalization and discrimination. Anim Learn Behav 30: 177-200.    
  • 108. Lazareva OF, Young ME, Wasserman EA (2014) A three-component model of relational responding in the transposition paradigm. J Exp Psychol Anim Learn Cogn 40: 63-80.    
  • 109. Wisniewski MG, Radell ML, Guillette LM, et al. (2012) Predicting shifts in generalization gradients with perceptrons. Learn Behav 40: 128-144.    
  • 110. Litaudon P, Mouly AM, Sullivan R, et al. (1997) Learning-induced changes in rat piriform cortex activity mapped using multisite recording with voltage sensitive dye. Eur J Neurosci 9:1593-1602.    
  • 111. Basar E (2004) Memory and brain dynamics: Oscillations integrating attention, perception, learning and memory. Boca Raton: CRC Press.
  • 112. Orduña I, Liu EH, Church BA, et al. (2012) Evoked-potential changes following discrimination learning involving complex sounds. Clin Neurophysiol 123: 711-719.    
  • 113. Freyer F, Becker R, Dinse HR, et al. (2013) State-dependent perceptual learning. J Neurosci 33:2900-2907.    
  • 114. Kanai R, Rees G (2011) The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 12: 231-242.
  • 115. Buzsaki G (2005) Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15: 827-840.    
  • 116. Hasselmo ME (2005) What is the function of hippocampal theta rhythm?—Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15: 936-949.
  • 117. Patel J, Fujisawa S, Berenyi A, et al. (2012) Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75: 410-417.    
  • 118. Lubenov EV, Siapas AG (2009) Hippocampal theta oscillations are travelling waves. Nature459: 534-539.
  • 119. Tsanov M, Wright N, Vann SD, et al. (2011) Hippocampal inputs mediate theta-related plasticity in anterior thalamus. Neuroscience 187: 52-62.    
  • 120. Hoffmann LC, Berry SD (2009) Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci U S A 106: 21371-21376.    
  • 121. Darling RD, Takatsuki K, Griffin AL, et al. (2011) Eyeblink conditioning contingent on hippocampal theta enhances hippocampal and medial prefrontal responses. J Neurophysiol 105:2213-2224.    
  • 122. Hyman JM, Hasselmo ME, Seamans JK (2011) What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms? Front Neurosci 5: 24.
  • 123. Seager MA, Johnson LD, Chabot ES, et al. (2002) Oscillatory brain states and learning: Impact of hippocampal theta-contingent training. Proc Natl Acad Sci U S A 99: 1616-1620.    
  • 124. Griffin AL, Asaka Y, Darling RD, et al. (2004) Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning. Behav Neurosci 118: 403-411.    
  • 125. Berry SD, Hoffmann LC (2011) Hippocampal theta-dependent eyeblink classical conditioning: Coordination of a distributed learning system. Neurobiol Learn Mem 95: 185-189.    
  • 126. Burke JF, Sharan AD, Sperling MR, et al. (2014) Theta and high-frequency activity mark spontaneous recall of episodic memories. J Neurosci 34: 11355-11365.    
  • 127. Squire LR, Kandel ER (1999) Memory: From minds to molecules. New York: Scientific American Library.
  • 128. Cabeza R, Moscovitch M (2013) Memory systems, processing modes, and components: Functional neuroimaging evidence. Perspect Psychol Sci 8: 49-55.    
  • 129. Craik FIM (1985) Paradigms in human memory research. In: Nilsson L-G, Archer T, editors. Perspectives on learning and memory. Hillsdale, NY: Lawrence Erlbaum, 197-221.
  • 130. Capaldi EJ, Neath I (1995) Remembering and forgetting as context discrimination. Learn Mem2: 107-132.
  • 132. Neath I, Crowder RG (1990) Schedules of presentation and temporal distinctiveness in human memory. J Exp Psychol Learn Mem Cogn 16: 316-327.    
  • 133. Neath I (1993) Distinctiveness and serial position effects in recognition. Mem Cognit 21:689-698.    
  • 134. Nairne JS (1991) Positional uncertainty in long-term memory. Mem Cognit 19: 332-340.    
  • 135. Wright AA (1999) Auditory list memory and interference processes in monkeys. J Exp Psychol Anim Behav Process 25: 284-296.    
  • 136. Wright AA, Roediger HL, III (2003) Interference processes in monkey auditory list memory. Psychon Bull Rev 10: 696-702.    
  • 137. Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci2: 635-642.
  • 138. Euston DR, Tatsuno M, McNaughton BL (2007) Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318: 1147-1150.    
  • 139. McVea DA, Mohajerani MH, Murphy TH (2012) Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci 32: 10982-10994.    
  • 140. Draaisma D (2000) Metaphors of memory: A history of ideas about the mind. Cambridge: Cambridge University Press.
  • 141. Rudy JW (2014) The neurobiology of learning and memory. Sunderland, MA: Sinauer Associates.
  • 142. Lee H, Fell J, Axmacher N (2013) Electrical engram: How deep brain stimulation affects memory. Trends Cogn Sci 17: 574-584.    
  • 143. Bartolomei F, Barbeau E, Gavaret M, et al. (2004) Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology 63: 858-864.    
  • 144. Bartolomei F, Barbeau EJ, Nguyen T, et al. (2012) Rhinal-hippocampal interactions during deja vu. Clin Neurophysiol 123: 489-495.    


This article has been cited by

  • 1. Eduardo Mercado III, Learning-Related Synaptic Reconfiguration in Hippocampal Networks: Memory Storage or Waveguide Tuning?, AIMS Neuroscience, 2015, 2, 1, 28, 10.3934/Neuroscience.2015.1.28

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Eduardo Mercado III, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved