Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Neural Plasticity and Learning: The Consequences of Sleep

Sleep, Stress, and Memory Laboratory, Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA

Special Issues: How do gamma frequency oscillations and NMDA receptors contribute to normal and dysfunctional cognitive performance?

  Figure/Table
  Supplementary
  Article Metrics

Citation: Alexis M. Chambers, Jessica D. Payne. Neural Plasticity and Learning: The Consequences of Sleep. AIMS Neuroscience, 2014, 1(2): 163-168. doi: 10.3934/Neuroscience.2014.2.163

References

  • 1. Roediger HL. (1980) Memory metaphors in cognitive psychology. Mem Cogn 8: 231-246.    
  • 2. Hebb DO. (1949) The organization of behaviour. New York: Wiley.
  • 3. Cadonic C, Albensi BC. (2014) Oscillations and NMDA receptors: Their interplay create memories. AIMS Neurosci 1: 52-64.
  • 4. Bliss TVP, Lomo T. (1973) Long-lasting potentiation of synaptic transmission in dentate area of anesthetized rabbit following stimulation of perforant path. J Physiol Lond 232: 331-356.    
  • 5. Bliss TVP, Collingridge GL. (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361: 31-39.    
  • 6. Dingledine R, Borges K, Bowie D, et al. (1999) The glutamate receptor ion channels. Pharmacol Rev 51: 7-61.
  • 7. Lisman J, Yasuda R, Raghavachari S. (2012) Mechanisms of CaMKII action in long-term potentiation. Nature Rev Neurosci 13: 169-181.
  • 8. Lynch MA. (2004) Long-term potentiation and memory. Physiol Rev 84: 87-136.    
  • 9. Whitlock JR, Heynen AJ, Shuler MG, et al. (2006) Learning induces long-term potentiation in the hippocampus. Science 313: 1093-1097.    
  • 10. Morris RG, Anderson E, Lynch GS, et al. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776.    
  • 11. Klimesch W. (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Rev 29: 169-195.    
  • 12. Hanslmayr S, Staudigl T. (2014) How brain oscillations form memories―A processing based perspective on oscillatory subsequent memory effects. NeuroImage 85: 648-655.    
  • 13. Jacobsen RB, Ulrich D, Huguenard JR. (2001) GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro. J Neurophysiol 86: 1365-1375.
  • 14. Korotkova T, Fuchs EC, Ponomarenko A, et al. (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68: 557-569.    
  • 15. Klimesch W. (1996) Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol 24: 61-100.    
  • 16. Hanslmayr S, Spitzer B, Bauml KH. (2009) Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cereb Cortex 19: 1631-1640.    
  • 17. Rechtschaffen A, Kales A. (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Los Angeles: Brain Information Service/Brain Research Institute, University of California.
  • 18. Stickgold R, Hobson JA, Fosse R, et al. (2001) Sleep, learning, and dreams: Off-line memory reprocessing. Science 294: 1052-1057.    
  • 19. Abel T, Havekes R, Saletin JM, et al. (2013) Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23: R774-R788.    
  • 20. Montgomery SM, Sirota A, Buzsaki G. (2008) Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 28: 6731-6741.    
  • 21. Gais S, Rasch B, Wagner U, et al. (2008) Visual-procedural memory consolidation during sleep blocked by glutamatergic receptor antagonists. J Neurosci 28: 5513-5518.    
  • 22. Aton SJ, Seibt J, Dumoulin M, et al. (2009) Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61: 454-466.    
  • 23. Shimizu E, Tang YP, Rampon C, et al. (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290: 1170-1174.    
  • 24. Fonseca R, Nagerl UV, Bonhoeffer T. (2006) Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nature Neuro 9: 478-480.    
  • 25. Frey U, Morris RGM. (1998) Synaptic tagging: Implications for late maintenance of hippocampal long-term potentiation. TINS 21: 181-188.
  • 26. Kopp C, Longordo F, Nicholson JR, et al. (2006) Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J Neurosci 26: 12456-12465.    
  • 27. Marshall L, Helgadottir H, Molle M, et al. (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444: 610-613.    
  • 28. Chauvette S, Seigneur J, Timofeev I. (2012) Sleep oscillations in the thalamocortical system induces long-term neuronal plasticity. Neuron 75: 1105-1113.    
  • 29. Rosanova M, Ulrich D. (2005) Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25: 9398-9405.    
  • 30. Timofeev I, Grenier F, Bazhenov M, et al. (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10: 1185-1199.    
  • 31. Werk CM, Harbour VL, Chapman CA. (2005) Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo. Neuroscience 131: 793-800.    
  • 32. Luo J, Phan TX, Yang Y, et al. (2013) Increases in camp, MAPK activity, and CREB phosphorylation during REM sleep: Implications for REM sleep and memory consolidation. J Neurosci 33: 6460-6468.    
  • 33. Kocsis B. (2012) State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors. Sleep 35: 1011-1016.
  • 34. Corsi-Cabrera M, Sifuentes-Ortega R, Rosales-Lagarde A, et al. (2014) Enhanced synchronization of gamma activity between frontal lobes during REM sleep as a function of REM sleep deprivation in man. Exp Brain Res 232: 1497-1508.    
  • 35. Cissé Y, Crochet S, Timofeev I, et al. (2004) Synaptic enhancement induced through callosal pathways in cat association cortex. J Neurphysiol 92: 3221-3232
  • 36. Lee AK, Wilson MA. (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36: 1183-1194.    
  • 37. Louie K, Wilson M. (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29: 145-156.    
  • 38. Eschenko O, Ramadan W, Mölle M, et al. (2008) Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem 15: 222-228.    
  • 39. Nishida M, Pearsall J, Buckner RL, et al. (2009) REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19: 1158-1166.    
  • 40. Buzsaki G. (1996) The hippocampo-neocortical dialogue. Cereb Cortex 6: 81-92.    
  • 41. Tononi G, Cirelli C. (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10: 49-62.    
  • 42. Tononi G, Cirelli C. (2014) Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81: 12-34.    
  • 43. Wamsley EJ, Tucker MA, Shinn AK, et al. (2012) Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? Biol Psychiat 71: 154-161.    
  • 44. Tekell JL, Hoffmann R, Hendrickse W, et al. (2005) High frequency EEG activity during sleep: characteristics in schizophrenia and depression. Clin EEG Neurosci 36: 25-35.    

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Alexis M. Chambers, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved