
AIMS Mathematics, 2019, 4(1): 134146. doi: 10.3934/Math.2019.1.134
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The dynamics of Zika virus with Caputo fractional derivative
1 Department of mathematics, City university of Science and Information Technology, Peshawar, KP, Pakistan
2 Department of mathematics, University of Peshawar, KP, Pakistan
3 Department of mathematics, Abdul wali khan university, Mardan, KP, Pakistan
Received: , Accepted: , Published:
Special Issues: New trends of numerical and analytical methods with application to real world models for instance RLC with new nonlocal operators
References
1. Zika virus, World Health Organization. Available from: http://www.who.int/mediacentre/factsheets/zika/en/.
2. G. Calvet, R. S. Aguiar, A. S. O. Melo, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study, Lancet infect dis., 16 (2016), 653660.
3. T. A. Perkins, A. S. Siraj, C. W. Ruktanonchai, et al. Modelbased projections of Zika virus infections in childbearing women in the Americas, Nat. Microbiol., 1 (2016), 16126.
4. A. J. Kucharski, S. Funk, R. M. M. Eggo, et al. Transmission dynamics of Zika virus in island populations: a modelling analysis of the 201314 French Polynesia outbreak, PLoS Neglect. Trop. D., 10 (2016), 38588.
5. E. Bonyah and K. O. Okosun, Mathematical modeling of Zika virus, Asian Pacific Journal of Tropical Disease, 6 (2016), 637679.
6. E. Bonyah, M. A. Khan, K. O. Okosun, et al. A theoretical model for Zika virus transmission, Plos one, 12 (2017), 126.
7. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Elsevier, 1998.
8. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications, 1993.
9. A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763769.
10. M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 113.
11. K. M. Owolabi, Numerical solution of diffusive HBV model in a fractional medium, SpringerPlus, 5 (2016), 1643.
12. K. M. Owolabi, Mathematical modelling and analysis of twocomponent system with Caputo fractional derivative order, Chaos Soliton. Fract., 103 (2017), 544554.
13. K. M. Owolabi, A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusionreaction equations, Chaos Soliton. Fract., 111 (2018), 119127.
14. E. Bas, R. Ozarslan, Real world applications of fractional models by AtanganaBaleanu fractional derivative, Chaos Soliton. Fract., 116 (2018), 121125.
15. E. Bas, R. Ozarslan, D. Baleanu, Comparative simulations for solutions of fractional SturmLiouville problems with nonsingular operators, Adv. Differ. EquNY, 2018 (2018), 350.
16. E. Bas, The Inverse Nodal problem for the fractional diffusion equation, Acta SciTechnol, 37 (2015), 251257.
17. E. Bas, F. Metin, Fractional singular SturmLiouville operator for Coulomb potential, Adv. Differ. EquNY, 2013 (2013), 300.
18. S. Ullah, M. A. Khan and M. F. Farooq, A new fractional model for the dynamics of Hepatitis B virus using CaputoFabrizio derivative, European Physical Journal Plus, 133 (2018), 237.
19. M. A. Khan, S. Ullah and M. F. Farooq, A new fractional model for tuberculosis with relapse via AtanganaBaleanu derivative, Chaos Soliton. Fract., 116 (2018), 227238.
20. M. A. Khan, S. Ullah and M. F. Farooq, A fractional model for the dynamics of TB virus, Chaos Soliton. Fract., 116 (2018), 6371.
21. B. S. T. Alkahtani, A. Atangana, I. Koca, Novel analysis of the fractional Zika model using the Adams type predictorcorrector rule for nonsingular and nonlocal fractional operators, The Journal of Nonlinear Sciences and Applications, 10 (2017), 31913200.
22. H. Elsaka and E. Ahmed, A fractional order network model for ZIKA, BioRxiv, 2016.
23. D. Hadi, D. Baleanu and J. Sadati, Stability analysis of Caputo fractionalorder nonlinear systems revisited, Nonlinear Dynam., 67 (2012), 24332439.
24. V. D. L. Cruz, Volterratype Lyapunov functions for fractionalorder epidemic systems, Commun. Nonlinear Sci., 24 (2015), 7585.
25. Z. M. Odibat and N. T. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186 (2007), 286293.
26. W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709726.
27. H. A. Antosiewicz, J. K. Hale, Studies in Ordinary Differential Equations, In: Englewood Cliffs (N. J.) by Mathematical Association of America, 1977.
28. P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Bellman Prize in Mathematical Biosciences, 180 (2002), 2948.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)