Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions

Department of Mathematics, Oum El Bouaghi University, Algeria

Special Issues: New trends of numerical and analytical methods with application to real world models for instance RLC with new nonlocal operators

We study a new class of boundary value problems of nonlinear fractional differential equations whose nonlinear term depends on a lower-order derivative with fractional non-separated type integral boundary conditions. Some existence and uniqueness results are obtained by using standard fixed point theorems. Examples are given to illustrate the results.
  Figure/Table
  Supplementary
  Article Metrics

Keywords fractional differential equations; fractional non-separated boundary conditions; fixed point theorems; existence

Citation: Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene. Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112

References

  • 1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland Mathematics Studies, Amsterdam: Elsevier Science, 2006.
  • 2. A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer, 2003.
  • 3. B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), ID: 494720.
  • 4. B. Ahmad, A. Alsaedi, B. Alghamdi, Analytic approximation of soltions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal: Real World Appl., 9 (2008), 1727-1740.    
  • 5. B. Ahmad, J. J. Nieto, A. Alsaedi, Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions, Acta Math. Sci., 31 (2011), 2122-2130.    
  • 6. B. Ahmad, S. K. Ntouyas, Fractional differential inclusions with fractional separated boundary conditions, Fract. Calc. Appl. Anal., 15 (2012), 362-382.
  • 7. D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, New York: Springer, 2012.
  • 8. F. Yan, M. Zuo, X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), 1-10.    
  • 9. I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999.
  • 10. J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus - Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007.
  • 11. R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press & Beijing World Publishing Corporation, 2008.
  • 12. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, USA: Gordon and Breach Science Publishers, 1993.
  • 13. S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Eq., 2006 (2006), 1-12.
  • 14. V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
  • 15. X. Hao, H.Wang, Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions, Open Math., 16 (2018), 581-596.    
  • 16. X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Meth. Appl. Sci., 41 (2018), 6984-6996.    
  • 17. X. Liu, Z. Liu, Separated boundary value problem for fractional differential equations depending on lower-order derivative, Adv. Differ. Equations, 2013 (2013), 1-11.    
  • 18. X. Y. Liu, Y. L. Liu, Fractional differential equations with fractional non-separated boundary conditions, Electron. J. Differ. Eq., 2013 (2013), 1-13.    
  • 19. Y. F. Sun, Z. Zeng, J. Song, Existence and uniqueness for the boundary value Problems of nonlinear fractional differential equations, Appl. Math., 8 (2017), 312-323.    

 

This article has been cited by

  • 1. Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang, Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type, AIMS Mathematics, 2020, 5, 1, 557, 10.3934/math.2020037
  • 2. Abdelkader Amara, Existence results for hybrid fractional differential equations with tree-point boundary conditions, AIMS Mathematics, 2020, 5, 2, 1074, 10.3934/math.2020075
  • 3. Mandana Talaee, Mehdi Shabibi, Alireza Gilani, Shahram Rezapour, On the existence of solutions for a pointwise defined multi-singular integro-differential equation with integral boundary condition, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s13662-020-2517-2
  • 4. Choukri Derbazi, Hadda Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Mathematics, 2020, 5, 3, 2694, 10.3934/math.2020174
  • 5. Ali Ahmadian, Shahram Rezapour, Soheil Salahshour, Mohammad Esmael Samei,  Solutions of sum‐type singular fractional q integro‐differential equation with m ‐point boundary value problem using quantum calculus , Mathematical Methods in the Applied Sciences, 2020, 10.1002/mma.6591

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved