AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Study of Multivalent Spirallike Bazilevic Functions

1 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan
2 Department of Mathematics, Riphah International University Islamabad, Pakistan

In this paper, we introduce certain new subclasses of multivalent spirallike Bazilevicfunctions by using the concept of k-uniformly starlikness and k-uniformly convexity. We proveinclusion relations, su cient condition and Fekete-Szego inequality for these classes of functions.Convolution properties for these classes are also discussed.
  Article Metrics

Keywords kpirallike function; Bazilevic functions; multivalent function; necessary and su cientconditions

Citation: Nazar Khan, Ajmal Khan, Qazi Zahoor Ahmad, Bilal Khan, Shahid Khan. Study of Multivalent Spirallike Bazilevic Functions. AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353


  • 1. M. Arif, J. Dziok, M. Raza, et al. On products of multivalent close-to-star functions, J. Ineq. appl., 2015 (2015), 1–14.
  • 2. I. E. Bazilevic, On a case of integrabitity in quadratures of the Loewner-Kufarev equation, Matematicheskii Sbornik, 79 (1955), 471–476.
  • 3. I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), 469–474.
  • 4. F. R. Keogh and E. P. Merkes, A coeffcient inequality for certain classes of analytic functions, P. Am. Math. Soc., 20 (1969), 8–12.
  • 5. S. Kanas, Coeffcient estimate in subclasses of the Caratheodary class related to conic domains, Acta Math. Univ. Comenianae, 74 (2005), 149–161.
  • 6. S. Kanas and D. R˘aducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196.
  • 7. S. Kanas and A. Wi´sniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336.
  • 8. S. Kanas and A. Wi´sniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–657.
  • 9. S. Kanas, Techniques of the di_erential subordination for domains bounded by conic sections, International Journal of Mathematics and Mathematical Sciences, 38 (2003), 2389–2400.
  • 10. N. Khan, B. Khan, Q. Z. Ahmad, et al. Some Convolution properties of multivalent analytic functions, AIMS Mathematics, 2 (2017), 260–268.
  • 11. N. Khan, Q. Z. Ahmad, T. Khalid, et al. Results on spirallike p-valent functions, AIMS Mathematics, 3 (2017), 12–20.
  • 12. R. Libera, Univalent a-spiral functions, Ca˜nad. J. Math., 19 (1967), 449–456.
  • 13. K. I. Noor, N. Khan and Q. Z. Ahmad, Coeffcient bounds for a subclass of multivalent functions of reciprocal order, AIMS Mathematics, 2 (2017), 322–335.
  • 14. K. I. Noor, N. Khan and M. A. Noor, On generalized spiral-like analytic functions, Filomat, 28 (2014), 1493–1503.
  • 15. K. I. Noor and S. N. Malik, On coeffcient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217.
  • 16. S. Owa, K. Ochiai and H. M.Srivastava, Some coeffcients inequalities and distortion bounds associated with certain new subclasses of analytic functions, Math. Ineq. Appl., 9 (2006), 125–135.
  • 17. R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proceedings of the American Mathematical Society, 106 (1989), 145–152.
  • 18. S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, International Journal of Mathematics and Mathematical Sciences, 2004 (2004), 2959–2961.
  • 19. L. Spacek, Prispevek k teorii funkei prostych, Casopis pest. Mat., 62 (1933), 12–19.


Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved