
AIMS Mathematics, 2018, 3(1): 148182. doi: 10.3934/Math.2018.1.148
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A minimization approach to conservation laws with random initialconditions and nonsmooth, nonstrictly convex flux
University of Pittsburgh, Mathematics Department, 301 Thackeray Hall, Pittsburgh PA 15260
Received: , Accepted: , Published:
References
1. D. Applebaum, Levy Processes and Stochastic Calculus, 2 Eds, Cambridge: Cambridge University Press, 2009.
2. J. Bertoin, Levy Processes, Cambridge: Cambridge University Press, 1996.
3. P. Billingsley, Probability and Measure, New York: Wiley, 2012.
4. Y. Brienier, E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317–2328.
5. C. Caginalp, Minimization Solutions to Conservation Laws with NonSmooth and NonStrictly Convex Flux, AIMS Mathematics, 3 (2018), 96–130.
6. M. Chabanol, J. Duchon, Markovian solutions of inviscid Burgers equation, J. Stat. Phys., 114 (2004), 525–534.
7. M. Crandall, L. Evans, P. Lions, Some properties of viscosity solutions of HamiltonJacobi equations, Trans. Amer. Math. Soc., 282 (1984), 487–502.
8. C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33–41.
9. C. Dafermos, Hyberbolic Conservation Laws in Continuum Physics, 3 Eds, New York: Springer, 2010.
10. E. Weinan, G. Rykov, G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Commun. Math. Phys., 177 (1996), 349–380.
11. C. Evans, Partial Differential Equations, 2 Eds, New York: Springer, 2010.
12. L. Frachebourg, P. Martin, Exact statistical properties of the Burgers equation, J. Fluid Mech., 417 (2000), 323–349.
13. D. G. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, New York: Springer, 1977.
14. P. Groeneboom, Brownian motion with a parabolic drift and Airy functions, Probab. Theory Rel., 81 (1989), 79–109.
15. M. Hairer, J. Maas, H. Weber, Approximating rough stochastic PDEs, Comm. Pure Appl. Math., 67 (2013), 776–870.
16. H. Holden, N. Risebro, Front Tracking for Hyperbolic Conservation Laws, New York: Springer, 2015.
17. E. Hopf, The partial differential equation u_{t} + uu_{x} = μu_{xx}, Comm. Pure Appl. Math., 3 (1950), 201–230.
18. D. Kaspar, F. Rezakhanlou, Scalar conservation laws with monotone purejump Markov initial conditions, Probab. Theory Relat. Fields, 165 (2016), 867–899.
19. A. Kaufman, H. Lim, J. Glimm, Conservative front tracking: the algorithm, the rationale and the API, Bulletin of the Institute of Mathematics, 11 (2016), 115–130.
20. D. Khoshnevisan, Z. Shi, Chung's Law for Integrated Brownian Motion, T. Am. Math. Soc., 350 (1998), 4253–4264.
21. P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537–566.
22. P. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, 1973.
23. G. Menon, Complete integrability of shock clustering and Burgers turbulence, Arch. Ration. Mech. An., 203 (2012), 853–882.
24. G. Menon, R. Pego, Universality classes in Burgers turbulence, Comm. Math. Phys., 273 (2007), 177–202.
25. G. Menon, R. Srinivasan, Kinetic theory and Lax equations for shock clustering and Burgers turbulence, J. Stat. Phys., 140 (2010), 1195–1223.
26. M. Pinsky, S. Karlin, An Introduction to Stochastic Modeling, Burlington: Elsevier, 2011.
27. S. Ross, Introduction to Proabbility Models, 10 Eds, Burlington: Elsevier, 2010.
28. H. Royden, P. Fitzpatrick, Real Analysis, 4 Eds, Boston: Prentice Hall, 2010.
29. Z. Schuss, Theory and Applications of Stochastic Processes: An Analytical Approach, New York: Springer, 2010.
30. S. Shankar, Burgers Equation in 1D and 2D, 2012. Available from: https://www.mathworks.com/matlabcentral/fileexchange/38087burgersequationin1dand2d?focused=5246985&tab=function
31. M. Slemrod, (2013) Admissibility of the weak solutions for the compressible Euler equations, $n\geq2$, Philos. T. R. Soc. A, 371 (2013), pp20120351.
32. D. She, R. Kaufman, H. Lim, et al. Handbook of Numerical Analysis, Elsevier 17, 383–402.
33. A. Vol'pert, Spaces BV and quasilinear equations, Mat. Sb. (N.S.), 73 (1967), 255–302.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)