
AIMS Mathematics, 2017, 2(4): 706735. doi: 10.3934/Math.2017.4.706.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Meanfieldtype games
Learning and Game Theory Laboratory, New York University Abu Dhabi
Received: , Accepted: , Published:
Keywords: game theory; coalition; meanfield; Wiener chaos; dynamic programming; maximum principle
Citation: Hamidou Tembine. Meanfieldtype games. AIMS Mathematics, 2017, 2(4): 706735. doi: 10.3934/Math.2017.4.706
References:
 1. L. S. Shapley, Stochastic games, PNAS, P. Natl Acad. Sci. USA, 39 (1953), 10951100.
 2. B. Jovanovic, R. W. Rosenthal, Anonymous sequential games, J. Math. Econ. Elsevier, 17 (1988), 7787.
 3. J. M. Lasry, P. L. Lions, Mean field games, Jpn. J. Math. 2 (2007), 229260.
 4. A. Bensoussan, B. Djehiche, H. Tembine, et al. Risksensitive meanfieldtype control, IEEE CDC, 2017.
 5. B. Djehiche, S. A. Tcheukam and H. Tembine, A MeanField Game of Evacuation in MultiLevel Building, IEEE T. Automat. Contr. 62 (2017), 51545169.
 6. L. A. Petrosjan, Stability of the solutions in differential games with several players, Vestnik Leningrad. univ. 19 (1977), 4652.
 7. B. Jourdain, S. Méléard andW.Woyczynski, Nonlinear SDEs driven by Lévy processes and related PDEs, Alea, 4 (2008), 129.
 8. R. Buckdahn, B. Djehiche, J. Li, et al. Meanfield backward stochastic differential equations: a limit approach, Ann. Probab. 37 (2009), 15241565.
 9. R. Buckdahn, J. Li and S. Peng, Meanfield backward stochastic differential equations and related partial differential equations, Stoch. Proc. Appl. 119 (2009), 31333154.
 10. D. Andersson, B. Djehiche, A maximum principle for SDEs of MeanField Type, Appl. Math. Opt. 63 (2011), 341356.
 11. R. Buckdahn, B. Djehiche and J. Li, A General Stochastic Maximum Principle for SDEs of MeanField Type, Appl. Math. Opt. 64 (2011), 197216.
 12. J. Hosking, A stochastic maximum principle for a stochastic differential game of a meanfield type, Appl. Math. Opt. 66 (2012), 415454.
 13. J. Li, Stochastic maximum principle in the meanfield controls, Automatica, 48 (2012), 366373.
 14. M. Hafayed, S. Abbas, A. Abba, On meanfield partial information maximum principle of optimal control for stochastic systems with Lévy processes, J. Optimiz. Theory App. 167 (2015), 10511069.
 15. R. Elliott, X. Li and Y. H. Ni, Discrete time meanfield stochastic linearquadratic optimal control problems, Automatica, 49 (2013), 32223233.
 16. M. Hafayed, A meanfield maximum principle for optimal control of forwardbackward stochastic differential equations with Poisson jump processes, International Journal of Dynamics and Control, 1 (2013), 300315.
 17. A. Bensoussan, J. Frehse and S. C. P. Yam, Meanfield games and meanfieldtype control theory, SpringerBriefs in mathematics, Springer, 2013.
 18. B. Djehiche, H. Tembine and R. Tempone, A Stochastic Maximum Principle for RiskSensitive MeanFieldType Control, IEEE T. Automat. Contr. 60 (2015), 26402649.
 19. H. Tembine, Risksensitive meanfieldtype games with Lpnorm drifts, Automatica, 59 (2015), 224237.
 20. B. Djehiche, H. Tembine, RiskSensitive MeanFieldType Control under Partial Observation, In Stochastics in environmental and financial economics, Springer Proceedings in Mathematics and Statistics, 2016.
 21. K. Law, H. Tembine and R. Tempone, Deterministic MeanField Ensemble Kalman Filtering, SIAM J. Sci. Comput. 38 (2016), 12511279.
 22. J. Robinson, Applied Analysis lecture notes, University of Warwick, 2006.
 23. R. H. Cameron, W. T. Martin, The orthogonal development of nonlinear functionals in series of FourierHermite functionals, Ann. Math. 48 (1947), 385392.
 24. N. Wiener, The homogeneous chaos, Am. J. Math. 60 (1938), 897936.
 25. N. Wiener, Nonlinear Problems in Random Theory, Technology Press of the Massachusetts Institute of Technology/Wiley, New York, 1958.
 26. F. Augustin, A. Gilg, M. Paffrath, et al. Polynomial chaos for the approximation of uncertainties: Chances and limits, Eur. J. Appl. Math. 19 (2008), 149190.
 27. G. Wang, C. Zhang and W. Zhang, Stochastic maximum principle for meanfield type optimal control under partial information, IEEE T. Automat. Contr. 59 (2014), 522528.
 28. Z.Wu, A maximum principle for partially observed optimal control of forwardbackward stochastic control systems, Science China information sciences, 53 (2010), 22052214.
 29. J. Yong, Linearquadratic optimal control problems for meanfield stochastic differential equations, SIAM J. Control Optim. 51 (2013), 28092838.
 30. H. Tembine, Uncertainty quantification in meanfieldtype teams and games, In Proceedings of 54th IEEE Conference on Decision and Control (CDC), 2015, 44184423,
 31. S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations, SIAM J. Control Optim. 36 (1998), 15961617.
 32. H. Ma, B. Liu, Linear Quadratic Optimal Control Problem for Partially Observed Forward Backward Stochastic Differential Equations of MeanField Type, Asian J. Control, 2017.
 33. G. Wang, Z. Wu and J. Xiong, A linearquadratic optimal control problem of forwardbackward stochastic differential equations with partial information, IEEE T. Automat. Contr. 60 (2015), 29042916.
 34. Q. Meng, Y. Shen, Optimal control of meanfield jumpdiffusion systems with delay: A stochastic maximum principle approach, J. Comput. Appl. Math. 279 (2015), 1330.
 35. T. MeyerBrandis, B. Oksendal and X. Y. Zhou, A meanfield stochastic maximum principle via Malliavin calculus, Stochastics, 84 (2012), 643666.
 36. Y. Shen, Q. Meng and P. Shi, Maximum principle for meanfield jumpdiffusion stochastic delay differential equations and its application to finance, Automatica, 50 (2014), 15651579.
 37. Y. Shen, T. K. Siu, The maximum principle for a jumpdiffusion meanfield model and its application to the meanvariance problem, Nonlinear AnalTheor, 86 (2013), 5873.
 38. G.Wang, Z.Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE T. Automat. Contr. 54 (2009), 12301242.
 39. G. Wang, Z. Wu and J. Xiong, Maximum principles for forwardbackward stochastic control systems with correlated state and observation noises, SIAM J. Control Optim. 51 (2013), 491524.
 40. B. Djehiche, A. Tcheukam and H. Tembine, MeanFieldType Games in Engineering, AIMS Electronics and Electrical Engineering, 1 (2017), 1873.
 41. J. Gao, H. Tembine, Distributed MeanFieldType Filters for Big Data Assimilation, IEEE International Conference on Data Science Systems (DSS), Sydney, Australia, 1214 Dec. 2016.
 42. A. K. Cisse, H. Tembine, Cooperative MeanField Type Games, 19th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, 2429 August 2014, 89959000.
 43. H. Tembine, Tutorial on MeanFieldType Games, 19th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, 2429 August 2014.
 44. G. Rossi, A. S. Tcheukam and H. Tembine, How Much Does Users' Psychology Matter in Engineering MeanFieldType Games,Workshop on Game Theory and Experimental Methods, June 67, Second University of Naples, Italy, 2016.
 45. A. S. Tcheukam, H. Tembine, On the Distributed MeanVariance Paradigm, 13th International MultiConference on Systems, Signals & Devices. Conference on Systems, Automation & Control. March 2124, 2016  Leipzig, Germany, 604609.
 46. T. E. Duncan, H. Tembine, Linearquadratic meanfieldtype games: A direct method, Preprint, 2017.
 47. T. E. Duncan, H. Tembine, Linearquadratic meanfieldtype games with common noise: A direct method, Preprint, 2017.
 48. T. E. Duncan, H. Tembine, Otherregarding payoffs in linearquadratic meanfieldtype games with common noise: A direct method, Preprint, 2017.
 49. T. E. Duncan, H. Tembine, Nash bargaining solution in linearquadratic meanfieldtype games: A direct method, Preprint, 2017.
 50. H. Tembine, B. Djehiche, P. Yam, et al. Meanfieldtype games with jumps and regime switching, Preprint, 2017.
This article has been cited by:
 1. Tyrone Duncan, Hamidou Tembine, Linear–Quadratic MeanFieldType Games: A Direct Method, Games, 2018, 9, 1, 7, 10.3390/g9010007
 2. Alexander Aurell, Boualem Djehiche, Modeling tagged pedestrian motion: A meanfield type game approach, Transportation Research Part B: Methodological, 2019, 121, 168, 10.1016/j.trb.2019.01.011
 3. Alain Bensoussan, Boualem Djehiche, Hamidou Tembine, Sheung Chi Phillip Yam, MeanFieldType Games with Jump and Regime Switching, Dynamic Games and Applications, 2019, 10.1007/s13235019003062
Reader Comments
Copyright Info: 2017, Hamidou Tembine, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *