Research article

Fractional calculus and the ESR test

  • Received: 21 August 2017 Accepted: 08 December 2017 Published: 15 December 2017
  • MSC : 26A33, 33RXX, 34A30, 35KXX, 92BXX

  • We consider the partial differential equation of a mathematical model proposed by Sharma et al. [1] to describe the concentration of nutrients in blood, a factor which influences erythrocyte sedimentation rate. Introducing in it a fractional derivative in the Caputo sense, we create a new, timefractional mathematical model which contains, as a particular case, the original model. We obtain an analytic solution of this time-fractional partial differential equation in terms of Mittag-Leffler and Wright functions and to show that our model is more realistic than the Sharma model.

    Citation: J. Vanterler da C. Sousa, E. Capelas de Oliveira, L. A. Magna. Fractional calculus and the ESR test[J]. AIMS Mathematics, 2017, 2(4): 692-705. doi: 10.3934/Math.2017.4.692

    Related Papers:

  • We consider the partial differential equation of a mathematical model proposed by Sharma et al. [1] to describe the concentration of nutrients in blood, a factor which influences erythrocyte sedimentation rate. Introducing in it a fractional derivative in the Caputo sense, we create a new, timefractional mathematical model which contains, as a particular case, the original model. We obtain an analytic solution of this time-fractional partial differential equation in terms of Mittag-Leffler and Wright functions and to show that our model is more realistic than the Sharma model.


    加载中
    [1] G. C. Sharma, M. Jain, R. N. Saral, A mathematical model for concentration of blood affecting erythrocyte sedimentation, Comput. Biol. Med. 26 (1996), 1-7.
    [2] E. Kucharz, The forgotten contribution of dr. Edmund Faustyn Biernacki (1866-1911) to the discovery of the erythrocyte sedimentation rate, J. Lab. Clin. Med. 112 (1988), 279-280.
    [3] E. J. Kucharz, Edmund Biernacki and erythrocyte sedimentation rate, J. Lab. Clin. Med. 329 (1987), 696.
    [4] A. Grzybowski, J. J. Sak, Who discovered the erythrocyte sedimentation rate? J. Rheumatol. 38 (2011), 1521-1522.
    [5] E. Biernacki, Die spontane blutsedimentirung als eine wissenschaftliche und praktischklinische untersuchungsmethode? Deut. Med. Wochenschr., Georg Thieme Verlag, Stuttgart, 23 (1897), 769-772.
    [6] E. Biernacki, Samoistna sedymentacja krwi, jako naukowa i praktyczno-kliniczna metoda badania (spontaneous sedimentation of red blood cells in clinical practice), Gazeta Lekarska, 36 (1897), 962-968.
    [7] A. Westergren, Studies of the suspension stability of the blood in pulmonary tuberculosis1, Acta Medica Scandinavica, Wiley Online Library, 54 (2009), 247-282.
    [8] A. Westergren, The technique of the red cell sedimentation reaction, Am. Rev. Tuberc, 14 (1926), 94-101.
    [9] R. Fahraeus, The suspension-stability of blood, Acta Med. Scand. 55 (1921), 1-228.
    [10] R. Fahraeus, The suspension stability of the blood, Physiol. rev. 9 (1929), 241-274.
    [11] M. Brigden, The erythrocyte sedimentation rate: still a helpful test when used judiciously, Postgrad. Med. Taylor and Francis, 103 (1998), 257-274.
    [12] N. Van den Broek, E. Letsky, Pregnancy and the erythrocyte sedimentation rate, Brit. J. Obstet. Gynaec. Elsevier, 108 (2001), 1164-1167.
    [13] J. S. Olshaker, D. A. Jerrard, Pregnancy and the erythrocyte sedimentation rate, J. Emerg. Med. Elsevier, 108 (1997), 869-874.
    [14] S. E. Bedell, B. T. Bush, Erythrocyte sedimentation rate. from folklore to facts, Am. J. Med. Elsevier, 78 (1985), 1001-1009.
    [15] M. Morris, F. Davey, Basic examination of blood, Clinical diagnosis and management by laboratory methods, WB Saunders Company Philadelphia, 20 (2001), 479-519.
    [16] P. Chaturani, S. Narasimbham, R. Puniyani, et al. A comparative study of erythrocyte sedimentation rate of hypertension and normal controls, In: Physiol. Fluid Dynamics Ⅱ: Tata McGraw Hill New Delhi, 20 (1987), 265-280.
    [17] I. Talstad, P. Scheie, H. Dalen, J. Roli, Influence of plasma proteins on erythrocyte morphology and sedimentation, Scand. J. Haematol. Wiley Online Library, 31 (1983), 478-484.
    [18] S. Nayha, Normal variation in erythrocyte sedimentation rate in males over 50 years old, Scand. J. Prim. Health, Taylor and Francis, 5 (1987), 5-8.
    [19] International Committee for Standardization in Haematology, for Standardization in. Reference method for the erythrocyte sedimentation rate (ESR) test on human blood, Brit. J. Haematol. 24 (1973), 671-673.
    [20] International Committee for Standardization in Haematology, Recommendations for measurement of erythrocyte sedimentation rate, J. Clin. Pathol. 46 (1993), 198-203.
    [21] K. V. Boroviczeny, L. Bottiger, B. Bull, et al. Recommendation for measurement of erythrocyte sedimentation rate of human blood: International Committee for Standardization in Haematology, Am. J. Clin. Pathol. The Oxford University Press, 68 (1977), 505-507.
    [22] B. S. Bull, G. Brecher, An evaluation of the relative merits of the wintrobe and westergren sedimentation methods, including hematocrit correction, Am. J. Clin. Pathol. 62 (1974), 502-510.
    [23] J. Whelan, C. R. Huang, A. L. Copley, Concentration profiles in erythrocyte sedimentation in human whole blood, Biorheology, 7 (1971), 205-212.
    [24] C. R. Huang, J. Whelan, H. H. Wang, et al. A mathematical model of sedimentation analysis applied to human whole blood, Biorheology, 8 (1971), 157-163.
    [25] W. K. Sartory, Prediction of concentration profiles during erythrocyte sedimentation by a hindered settling model, Biorheology, 11 (1974), 253-264.
    [26] A. Reuben, A. Shannon, Some problems in the mathematical modelling of erythrocyte sedimentation, Math. Med. Biol. IMA, 11 (1990) 145-156.
    [27] E. N. Lightfoot, Transport Phenomena in Living Systems, Wiley, New York, 1996.
    [28] E. K. Lenzi, L. C. Malacarne, R. S. Mendes, et al. Anomalous diffusion, nonlinear fractional fokker-planck equation and solutions, Physica A, 319 (2003), 245-252.
    [29] F. Mainardi, G. Pagnini, The Wright functions as solution of the time-fractional diffusion equation, Appl. Math. Comput. 141 (2003), 51-62.
    [30] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), 1-77.
    [31] J. Vanterler da C. Sousa, Erythrocyte sedimentation: A fractional model, Phd Thesis, Imecc-Unicamp, Campinas, 2017.
    [32] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, 198,1999.
    [33] M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento, 1 (1971), 161-178.
    [34] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer, Wien and New York, 54 (2008), 223-276.
    [35] L. Debnath, D. Bhatta, Integral Transforms and Their Applications, Second Edition, Chapman & Hall/CRC, Taylor and Francis Group, Boca Raton, 2007.
    [36] P. Dyke, An Introduction to Laplace Transforms and Fourier Series, Springer, New York, 2001.
    [37] M. El-Shahed, A. Salem, An extension of wright function and its properties, J. Math. Hindawi Publishing Corporation, 2015.
    [38] R. Figueiredo Camargo, E. Capelas de Oliveira, J. Vaz Jr., On anomalous diffusion and the fractional generalized langevin equation for a harmonic oscillator, J. Math. Phys. 50 (2009), 123518.
    [39] J. M. Harris, J. L. Hirst, M. J. Mossinghoff, Combinatorics and Graph Theory, Springer, New York, 2008.
    [40] R. Gorenflo, A. A. Kilbas, F. Mainardi, et al. Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014.
    [41] W. N. Schirmer, H. de M. Lisboa, R. d. F. P. M. Moreira, et al. Modeling of adsorption of volatile organic compounds on the carbon nanotubes cup-stacked using the model linear driving force (in portuguese), Acta Scientiarum. Technology, 32 (2010), 159-166.
    [42] J. Grote, R. Susskind, P. Vaupel, Oxygen diffusivity in tumor tissue ds-carcinosarcoma under temperature conditions within the range of 2040 c, Pflgers Archiv, Springer, 72 (1977), 37-42.
    [43] D. Aksnes, J. Egge, A theoretical model for nutrient uptake in phytoplankton, Marine Ecology Progress Series, Oldendorf, 70 (1991), 65-72.
    [44] F. Silva Costa, E. Capelas de Oliveira, J. Vaz Jr, On a class of inverse Laplace transform, not published.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2062) PDF downloads(1312) Cited by(22)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog