AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

On the Sum of Unitary Divisors Maximum Function

1 Department of Mathematics, B.P.Chaliha College, Assam-781127, India
2 Department of Mathematics, Gauhati University, Assam-781014, India

It is well-known that a positive integer $d$ is called a unitary divisor of an integer $n$ if $d|n$ and gcd$\left(d,\frac{n}{d}\right)=1$. Divisor function $\sigma^{*}(n)$ denote the sum of all such unitary divisors of $n$. In this paper we consider the maximum function $U^{*}(n)=\max\{k\in\mathbb{N}:\sigma^{*}(k)|n\}$and study the function $U^{*}(n)$ for $n=p^{m}$, where $p$ is a prime and $m\geq 1$.
  Article Metrics

Keywords Unitary Divisor function; Smarandache function; Fermat prime

Citation: Bhabesh Das, Helen K. Saikia. On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96


  • 1. C. Ashbacker, An introduction to the Smarandache function, Erhus Univ. Press ,Vail, AZ, 1995.
  • 2. David M. Burton, Elementary number theory, Tata McGraw-Hill Sixth Edition, 2007.
  • 3. E. Cohen, Arithmetical functions associated with the unitary divisors of an integer. Math. Zeits., 74 (1960), 66-80.
  • 4. P. Moree, H. Roskam, On an arithmetical function related to Euler's totient and the discriminator. Fib. Quart., 33 (1995), 332-340.
  • 5. J. Sandor, On certain generalizations of the Smarandnche function. Notes Num. Th. Discr. Math., 5 (1999), 41-51.
  • 6. J. Sandor, A note on two arithmetic functions. Octogon Math. Mag., 8 (2000), 522-524.
  • 7. J. Sandor, On a dual of the Pseudo-Smarandache function. Smarandnche Notition Journal, 13 (2002).
  • 8. J. Sandor, A note on exponential divisors and related arithmetic functions. Sci. Magna, 1 (2005), 97-101.
  • 9. J. Sandor, The unitary totient minimum and maximum functions. Sci. Studia Univ. "Babes-Bolyai", Mathematica, 2 (2005), 91-100.
  • 10. J. Sandor, The product of divisors minimum and maximum function. Scientia Magna, 5 (2009), 13-18.
  • 11. J. Sandor, On the Euler minimum and maximum functions. Notes Num. Th. Discr. Math., 15 (2009), 1-8.


Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Bhabesh Das, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved