
AIMS Mathematics, 2016, 1(3): 288317. doi: 10.3934/Math.2016.3.288
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
New approximate method for the Allen–Cahn equation with doubleobstacle constraint and stability criteria for numerical simulations
1 Department of Mathematics, Faculty of Engineering, Kanagawa University, 3271 Rokkakubashi, Kanagawaku, Yokohama, 2218686, Japan
2 Graduate School of Mathematical Sciences, University of Tokyo, 381 Komaba Meguroku, Tokyo, 1538914, Japan
Received: , Accepted: , Published:
Special Issues: Nonlinear Evolution PDEs, Interfaces and Applications
References
1. S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall., 27 (1979), 10841095.
2. H. Attouch, Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, BostonLondonMelbourne, 1984.
3. L. Blank, H. Garcke, and L. Sarbu, Primaldual active set methods for AllenCahn variational inequalities with nonlocal constraints. Numer. Methods Partial Di erential Equations, 29 (2013), 9991030.
4. H. Br´ezis, Op´erateurs Maximaux Monotones et SemiGroupes de Contractions dans les Espaces de Hilbert. NorthHolland, Amsterdam, 1973.
5. H. Br´ezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space. Comm. Pure Appl. Math., 23 (1970), 123144.
6. L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of GinzburgLandau dynamics. J. Differential Equations, 90 (1991), 211237.
7. X Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem. Proc. Roy. Soc. London Ser. A, 444 (1994), 429445.
8. M. H. FarshbafShaker, T. Fukao, and N. Yamazaki, Singular limit of AllenCahn equation with constraints and its Lagrange multiplier. Discrete Contin. Dyn. Syst., AIMS Proceedings (2015), 418427.
9. M. H. FarshbafShaker, T. Fukao, and N. Yamazaki, (In Press) Lagrange multiplier and singular limit of doubleobstacle problems for the AllenCahn equation with constraint. Math. Methods Appl. Sci..
10. X. Feng and A. Prohl, Numerical analysis of the AllenCahn equation and approximation for mean curvature flows. Numer. Math., 94 (2003), 3365.
11. X. Feng, H. Song, and T. Tang, Nonlinear stability of the implicitexplicit methods for the AllenCahn equation. Inverse Probl. Imaging, 7 (2013), 679695.
12. P. C. Fife, Dynamics of internal layers and diffusive interfaces. CBMSNSF Regional Conf. Ser. in: Appl. Math., 53 (1988), SIAM, Philadelphia.
13. A. Friedman, Partial Di erential Equations of Parabolic Type, PrenticeHall, INC., Englewood Cliffs, N. J., 1964.
14. Y. Giga, Y. Kashima, and N. Yamazaki, Local solvability of a constrained gradient system of total variation. Abstr. Appl. Anal., 2004 (2004), 651682.
15. A. Ito, N. Yamazaki, and N. Kenmochi, Attractors of nonlinear evolution systems generated by timedependent subdifferentials in Hilbert spaces. Dynamical systems and differential equations, Vol. I (Springfield, MO, 1996), Discrete Contin. Dynam. Systems 1998, Added Volume I, 327349.
16. N. Kenmochi, Solvability of nonlinear evolution equations with timedependent constraints and applications. Bull. Fac. Education, Chiba Univ., 30 (1981), 187.
17. N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities. Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 4 (2007) ed. M. Chipot, Chapter 4, 203298, North Holland, Amsterdam.
18. N. Kenmochi and M. Niezg´odka, Systems of nonlinear parabolic equations for phase change problems. Adv. Math. Sci. Appl., 3 (1993/94), Special Issue, 89117.
19. U. Mosco, Convergence of convex sets and of solutions variational inequalities. Advances Math., 3 (1969), 510585.
20. T. Ohtsuka, Motion of interfaces by an AllenCahn type equation with multiplewell potentials. Asymptot. Anal., 56 (2008), 87123.
21. T. Ohtsuka, K. Shirakawa, and N. Yamazaki, Optimal control problems of singular diffusion equation with constraint. Adv. Math. Sci. Appl., 18 (2008), 128.
22. T. Ohtsuka, K. Shirakawa, and N. Yamazaki, Convergence of numerical algorithm for optimal control problem of AllenCahn type equation with constraint. Proceedings of International Conference on: Nonlinear Phenomena with Energy DissipationMathematical Analysis, Modelling and Simulation, GAKUTO Intern. Ser. Math. Appl., Vol. 29 (2008), 441462.
23. T. Ohtsuka, K. Shirakawa, and N. Yamazaki, Optimal control problem for AllenCahn type equation associated with total variation energy. Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 159181.
24. J. Shen and X. Yang, Numerical approximations of AllenCahn and CahnHilliard equations. Discret. Contin. Dyn. Syst. Ser. A, 28 (2010), 16691691.
25. T. Suzuki, K. Takasao, and N. Yamazaki, Remarks on numerical experiments of AllenCahn equations with constraint via Yosida approximation. Adv. Numer. Anal., 2016, Article ID 1492812, 16 pages.
26. Y. Tonegawa, Integrality of varifolds in the singular limit of reactiondi usion equations. Hiroshima Math. J., 33 (2003), 323341.
27. X. Yang, Error analysis of stabilized semiimplicit method of AllenCahn equation. Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 10571070.
28. J. Zhang and Q. Du, Numerical studies of discrete approximations to the AllenCahn equation in the sharp interface limit. SIAM J. Sci. Comput., 31 (2009), 30423063.
Copyright Info: © 2016, Noriaki Yamazaki, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)