
AIMS Mathematics, 2016, 1(3): 212224. doi: 10.3934/Math.2016.3.212
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
On a fractional alternating Poisson process
Department of Mathematics, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA),Italy
Received: , Accepted: , Published:
References
1. L. Beghin, E. Orsingher, Poissontype processes governed by fractional and higherorder recursivedifferential equations, Electron. J. Probab., 15 (2010), 684709.
2. D.O. Cahoy, F. Polito, Renewal processes based on generalized MittagLeffler waiting times, Commun.Nonlinear Sci. Numer. Simul., 18 (2013), 639650.
3. A. Di Crescenzo, A probabilistic analogue of the mean value theorem and its applications to reliabilitytheory, J. Appl. Probab., 36 (1999), 706719.
4. A. Di Crescenzo, B. Martinucci, and A. Meoli, A fractional counting process and its connectionwith the Poisson process, ALEA Lat. Am. J. Probab. Math. Stat., 13 (2016), 291307.
5. R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, MittagLeffler Functions, Related Topicsand Applications, Springer, Berlin, 2014.
6. R. Gorenflo, F. Mainardi, On the fractional Poisson process and the discretized stable subordinator,Axioms, 4 (2015), 321344.
7. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Eighth edition, Elsevier/Academic Press, Amsterdam, 2014.
8. T. Lancaster, The Econometric Analysis of Transition Data, Econometric Society Monographs, 17,Cambridge University Press, Cambridge, 1990.
9. N. Laskin, Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 201213.
10. N. Laskin, Some applications of the fractional Poisson probability distribution, J. Math. Phys., 50(2009), 113513.
11. G.D. Lin, On the MittagLeffler distributions, J. Stat. Plan. Infer., 74 (1998), 19.
12. K.V. Mitov, N.M. Yanev, Limiting distributions for lifetimes in alternating renewal processes,Pliska Stud. Math. Bulg., 16 (2004), 137145.
13. R. Nelson, Probability, Stochastic Processes, and Queueing Theory: the Mathematics of ComputerPerformance Modeling, SpringerVerlag, New York, 1995.
14. E. Orsingher, F. Polito, Fractional pure birth processes, Bernoulli, 16 (2010), 858881.
15. E. Orsingher, F. Polito, On a fractional linear birthdeath process Bernoulli, 17 (2011), 114137.
16. E. Orsingher, F. Polito, and L. Sakhno, Fractional nonLinear, linear and sublinear death processes,J. Stat. Phys., 141 (2010), 6893.
17. R.N. Pillai, On MittagLeffler functions and related distributions, Ann. Inst. Statist. Math., 42(1990), 157161.
18. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, FractionalDifferential Equations, to Methods of Their Solution and Some of Their Applications. Mathematicsin Science and Engineering, 198, Academic Press, San Diego, 1999.
19. V.V. Uchaikin, D.O. Cahoy, and R.T. Sibatov, Fractional processes: from Poisson to branchingone, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 27172725.
20. V.V. Uchaikin, R.T. Sibatov, A fractional Poisson process in a model of dispersive charge transportin semiconductors, Russian J. Numer. Anal. Math. Modelling, 23 (2008), 283297.
21. S. Zacks, Distribution of the total time in a mode of an alternating renewal process with applications,Sequential Anal., 31 (2012), 397408.
Copyright Info: © 2016, Antonio Di Crescenzo, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)