-
AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
On a fractional alternating Poisson process
Department of Mathematics, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA),Italy
Received: , Accepted: , Published:
Keywords: Caputo derivative; Mittag-Leffler function; fractional process; alternating process; renewal process; renewal function
Citation: Antonio Di Crescenzo, Alessandra Meoli. On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212
References:
- 1. L. Beghin, E. Orsingher, Poisson-type processes governed by fractional and higher-order recursivedifferential equations, Electron. J. Probab., 15 (2010), 684-709.
- 2. D.O. Cahoy, F. Polito, Renewal processes based on generalized Mittag-Leffler waiting times, Commun.Nonlinear Sci. Numer. Simul., 18 (2013), 639-650.
- 3. A. Di Crescenzo, A probabilistic analogue of the mean value theorem and its applications to reliabilitytheory, J. Appl. Probab., 36 (1999), 706-719.
- 4. A. Di Crescenzo, B. Martinucci, and A. Meoli, A fractional counting process and its connectionwith the Poisson process, ALEA Lat. Am. J. Probab. Math. Stat., 13 (2016), 291-307.
- 5. R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, Mittag-Leffler Functions, Related Topicsand Applications, Springer, Berlin, 2014.
- 6. R. Gorenflo, F. Mainardi, On the fractional Poisson process and the discretized stable subordinator,Axioms, 4 (2015), 321-344.
- 7. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Eighth edition, Elsevier/Academic Press, Amsterdam, 2014.
- 8. T. Lancaster, The Econometric Analysis of Transition Data, Econometric Society Monographs, 17,Cambridge University Press, Cambridge, 1990.
- 9. N. Laskin, Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 201-213.
- 10. N. Laskin, Some applications of the fractional Poisson probability distribution, J. Math. Phys., 50(2009), 113513.
- 11. G.D. Lin, On the Mittag-Leffler distributions, J. Stat. Plan. Infer., 74 (1998), 1-9.
- 12. K.V. Mitov, N.M. Yanev, Limiting distributions for lifetimes in alternating renewal processes,Pliska Stud. Math. Bulg., 16 (2004), 137-145.
- 13. R. Nelson, Probability, Stochastic Processes, and Queueing Theory: the Mathematics of ComputerPerformance Modeling, Springer-Verlag, New York, 1995.
- 14. E. Orsingher, F. Polito, Fractional pure birth processes, Bernoulli, 16 (2010), 858-881.
- 15. E. Orsingher, F. Polito, On a fractional linear birth-death process Bernoulli, 17 (2011), 114-137.
- 16. E. Orsingher, F. Polito, and L. Sakhno, Fractional non-Linear, linear and sublinear death processes,J. Stat. Phys., 141 (2010), 68-93.
- 17. R.N. Pillai, On Mittag-Leffler functions and related distributions, Ann. Inst. Statist. Math., 42(1990), 157-161.
- 18. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, FractionalDifferential Equations, to Methods of Their Solution and Some of Their Applications. Mathematicsin Science and Engineering, 198, Academic Press, San Diego, 1999.
- 19. V.V. Uchaikin, D.O. Cahoy, and R.T. Sibatov, Fractional processes: from Poisson to branchingone, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2717-2725.
- 20. V.V. Uchaikin, R.T. Sibatov, A fractional Poisson process in a model of dispersive charge transportin semiconductors, Russian J. Numer. Anal. Math. Modelling, 23 (2008), 283-297.
- 21. S. Zacks, Distribution of the total time in a mode of an alternating renewal process with applications,Sequential Anal., 31 (2012), 397-408.
This article has been cited by:
- 1. Murugan Suvinthra, Krishnan Balachandran, Rajendran Mabel Lizzy, Large Deviations for Stochastic Fractional Integrodifferential Equations, AIMS Mathematics, 2017, 2, 2, 348, 10.3934/Math.2017.2.348
- 2. Antonio Di Crescenzo, Alessandra Meoli, On a jump-telegraph process driven by an alternating fractional Poisson process, Journal of Applied Probability, 2018, 55, 01, 94, 10.1017/jpr.2018.8
Reader Comments
Copyright Info: 2016, Antonio Di Crescenzo, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *