
AIMS Mathematics, 2016, 1(3): 195207. doi: 10.3934/Math.2016.3.195
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
RBF simulation of natural convection in a nanofluidfilled cavity
Basic Sciences Unit, TED University, Ankara, Turkey
Received: , Accepted: , Published:
References
1. H. R Ashorynejad, A. A. Mohamad, and M. Sheikholeslami,Magnetic field e ects on naturalconvection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method ,Int. J. Therm. Sci., 64 (2013), 240250.
2. H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 3 (1952),571581.
3. G. de vahl Davis, Natural convection of air in a square cavity : A bench mark numerical solution,Int. J. Numer. Meth. Fl., 3 (1983), 249264.
4. G. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific Publications, Singapore, 2007.
5. E. Fattahi, M. Farhadi, K. Sedighi, and H. Nemati, Lattice Boltzmann simulation of natural convection heat transfer in nanofluids, Int. J. Therm. Sci., 52 (2012), 137144.
6. B. Ghasemi, S. M. Aminossadati, and A. Raisi, Magnetic field e ect on natural convection in ananofluidfilled square enclosure, Int. J. Therm. Sci., 50 (2011), 17481756.
7. S. Gumgum and M. TezerSezgin, DRBEM solution of natural convection flow of nanofluids with a heat source, Eng. Ana. Bound., 34 (2010), 727737.
8. M. Jahanshahi, S. E. Hosseinizadeh, M. Alipanah, A. Dehghani, and G. R. Vakilinejad, Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid, Int. Comm. Heat Mass, 37 (2010), 687694.
9. R. Y. Jou and S. C. Tzeng, Numerical research of nature convective heat transfer enchancement filled with nanofluids in rectangular enclosures, Int. J. Heat Mass Tran., 33 (2006), 727736.
10. K. Khanafer, K. Vafai, and M. Lightstone, Buoyancydriven heat transfer enhancement in a twodimensional enclosure utilizing nanofluids, Int. J. Heat Mass Tran., 46 (2003), 36393653.
11. W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential errorestimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), 94114.
12. A. H. Mahmoudi, I. Pop, M. Shahi, and F. Talebi, MHD natural convection and entropy generation in a trapezoidal enclosure using Cuwater nanofluid, Comput. Fluids, 72 (2013), 4662.
13. J. C. MaxwellGarnett, Colors in metal glasses and in metallic films, Phil. Trans R. Soc. A, 203(1904), 385420.
14. C. A. Michelli, Interpolation of scattered data: Distance matrices and conditionally positivedefinite functions, Constr. Approx., 2 (1986), 1122.
15. M. Muthtamilselvan, P. Kandaswamy, and J. Lee, Heat transfer enhancement of copperwaternanofluids in a liddriven enclosure, Commun. Nonlinear Sci. Numer. Simulat.,15 (2010), 15011510.
16. J. Serna, F. J. S. Velasco, and A. S. Meca, Application of network simulation method to viscousflow: The nanofluid heated lid cavity under pulsating flow, Comput. Fluids, 91 (2014), 1020.
17. M. Shahi, A. H. Mahmoudi, and A. H. Raouf, Entropy generation due to natural convection coolingof nanofluid, Int. Comm. Heat Mass, 38 (2011), 972983.
18. C. Shu, Di erential quadrature and its application in engineering, SpringerVerlag, 2000.
19. R. K. Tiwari and M. K. Das, Heat transfer augmentation in a twosided liddriven differentially heated square cavity utilising nanofluids, Int. J. Heat Mass Tran., 50 (2007), 20022018
Copyright Info: © 2016, Bengisen Pekmen Geridonmez, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)