AIMS Mathematics, 2016, 1(3): 195-207. doi: 10.3934/Math.2016.3.195.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

RBF simulation of natural convection in a nanofluid-filled cavity

Basic Sciences Unit, TED University, Ankara, Turkey

In this study, natural convection in a cavity filled with a nanofluid is solved numerically utilizing a radial basis function pseudo spectral (RBF-PS) approach in the space domain and a differential quadrature method (DQM) in the time domain. The governing dimensionless equations are solved in terms of stream function, temperature and vorticity. In the cavity, thermally insulated top and bottom walls are maintained while the left and right walls are at constant temperatures.Numerical solutions present the average Nusselt number variation as well as streamlines, isotherms and vorticity contours. The non-dimensional problem parameters, Rayleigh number $Ra$, solid volume fraction $\chi$ and aspect ratio $AR$ are varied as $10^3\leq Ra \leq 10^6,\, 0 \leq \chi \leq 0.2$ and $AR=0.25,\, 0.5,\,1,\, 2,\, 4$, respectively.It is found that the fluid velocity and the heat transfer are enhanced in presence of nanoparticles, and the convective heat transfer is reduced in a rectangular cavity.
  Article Metrics

Keywords radial basis functions; multiquadrics; differential quadrature method; nanofluid; naturalconvection

Citation: Bengisen Pekmen Geridonmez. RBF simulation of natural convection in a nanofluid-filled cavity. AIMS Mathematics, 2016, 1(3): 195-207. doi: 10.3934/Math.2016.3.195


  • 1. H. R Ashorynejad, A. A. Mohamad, and M. Sheikholeslami,Magnetic field e ects on naturalconvection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method ,Int. J. Therm. Sci., 64 (2013), 240-250.
  • 2. H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 3 (1952),571-581.
  • 3. G. de vahl Davis, Natural convection of air in a square cavity : A bench mark numerical solution,Int. J. Numer. Meth. Fl., 3 (1983), 249-264.
  • 4. G. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific Publications, Sin-gapore, 2007.
  • 5. E. Fattahi, M. Farhadi, K. Sedighi, and H. Nemati, Lattice Boltzmann simulation of natural con-vection heat transfer in nanofluids, Int. J. Therm. Sci., 52 (2012), 137-144.
  • 6. B. Ghasemi, S. M. Aminossadati, and A. Raisi, Magnetic field e ect on natural convection in ananofluid-filled square enclosure, Int. J. Therm. Sci., 50 (2011), 1748-1756.
  • 7. S. Gumgum and M. Tezer-Sezgin, DRBEM solution of natural convection flow of nanofluids with a heat source, Eng. Ana. Bound., 34 (2010), 727-737.
  • 8. M. Jahanshahi, S. E. Hosseinizadeh, M. Alipanah, A. Dehghani, and G. R. Vakilinejad, Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid, Int. Comm. Heat Mass, 37 (2010), 687-694.
  • 9. R. Y. Jou and S. C. Tzeng, Numerical research of nature convective heat transfer enchancement filled with nanofluids in rectangular enclosures, Int. J. Heat Mass Tran., 33 (2006), 727-736.
  • 10. K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Tran., 46 (2003), 3639-3653.
  • 11. W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential errorestimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), 94-114.
  • 12. A. H. Mahmoudi, I. Pop, M. Shahi, and F. Talebi, MHD natural convection and entropy generation in a trapezoidal enclosure using Cu-water nanofluid, Comput. Fluids, 72 (2013), 46-62.
  • 13. J. C. Maxwell-Garnett, Colors in metal glasses and in metallic films, Phil. Trans R. Soc. A, 203(1904), 385-420.
  • 14. C. A. Michelli, Interpolation of scattered data: Distance matrices and conditionally positivedefinite functions, Constr. Approx., 2 (1986), 11-22.
  • 15. M. Muthtamilselvan, P. Kandaswamy, and J. Lee, Heat transfer enhancement of copper-waternanofluids in a lid-driven enclosure, Commun. Nonlinear Sci. Numer. Simulat.,15 (2010), 1501-1510.
  • 16. J. Serna, F. J. S. Velasco, and A. S. Meca, Application of network simulation method to viscousflow: The nanofluid heated lid cavity under pulsating flow, Comput. Fluids, 91 (2014), 10-20.
  • 17. M. Shahi, A. H. Mahmoudi, and A. H. Raouf, Entropy generation due to natural convection coolingof nanofluid, Int. Comm. Heat Mass, 38 (2011), 972-983.
  • 18. C. Shu, Di erential quadrature and its application in engineering, Springer-Verlag, 2000.
  • 19. R. K. Tiwari and M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilising nanofluids, Int. J. Heat Mass Tran., 50 (2007), 2002-2018


This article has been cited by

  • 1. Bengisen Pekmen Geridönmez, NUMERICAL SIMULATION OF NATURAL CONVECTION IN A POROUS CAVITY FILLED WITH FERROFLUID IN PRESENCE OF MAGNETIC SOURCE, Journal of Thermal Engineering, 2017, 4, 2, 1756, 10.18186/journal-of-thermal-engineering.369169
  • 2. Bengisen Pekmen Geridonmez, Free Convection in a Wavy Walled Cavity With a Magnetic Source Using Radial Basis Functions, Journal of Heat Transfer, 2019, 141, 4, 042501, 10.1115/1.4042782

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Bengisen Pekmen Geridonmez, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved