AIMS Mathematics, 2016, 1(2): 77-95. doi: 10.3934/Math.2016.2.77

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Which kind of mathematics was known and referred to by those who wanted to integrate mathematics in «Wisdom» –Neopythagoreans and others?

Section for philosophy and Science Studies, Roskilde University, Denmark

Plato, so the story goes, held mathematics in high esteem, and those philosopher-kings that ought to rule his republic should have a thorough foundation in mathematics. This may well be true – but an observation made by Aristotle suggests that the mathematics which Plato intends is not the one based on theorems and proofs which we normally identify with “Greek mathematics”. Most other ancient writers who speak of mathematics as a road toward Wisdom also appear to be blissfully ignorant of the mathematics of Euclid, Archimedes, Apollonios, etc. – though not necessarily of their names. The aim of the paper is to identify the kinds of mathematics which were available as external sources for this current (on the whole leaving out of consideration Liberal-Arts mathematics as not properly external). A number of borrowings can be traced to various practitioners' traditions – but always as bits borrowed out of context.
  Article Metrics


1. Babbitt, F. C. (ed., trans.), 1936. Plutarch's Moralia, vol. IV. London: Heinemann/ New York: Putnam.

2. Barnes, J. (ed.), 1984. The Complete Works of Aristotle. The Revised Oxford Translation. 2 vols. Princeton: Princeton University Press.

3. Boncompagni, B. (ed.), 1862. Scritti di Leonardo Pisano matematico del secolo decimo­terzo. II. Practica geometriae et Opusculi. Roma: Tipografia delle Scienze Matematiche e Fisiche.

4. Bubnov, N. (ed.), 1899. Gerberti postea Silvestri II papae Opera mathematica (972– 1003). Berlin: Friedländer.

5. Cantor, M., 1875. Die römischen Agrimensoren und ihre Stellung in der Geschichte der Feldmess­kunst. Eine historisch-mathematische Untersuchung. Leipzig: Teubner.

6. Chemla, K., & Guo S. (ed., trans.), 2004 Les neuf chapitres. Le Classique mathématique de la Chine ancienne et ses commentaires. Paris: Dunod.

7. Clark, W. E. (ed., trans.), 1930. The Āryabhaṭīya of Āryabhaṭa. Chicago: University of Chicago Press.

8. Colebrooke, H. T. (ed., trans.), 1817. Algebra, with Arithmetic and Mensuration from the Sanscrit of Brahmagupta and Bhascara. London: John Murray.

9. Cullen, C. (ed., trans.), 2004 The Suàn shù shū, “Writings on Reckoning”: A Translation of a Chinese Mathematical Collection of the Second Century bc, with Explanatory Commentary. (Needham Research Institute Working Papers, 1). Cambridge: Needham Research Institute. Web edition available from:

10. de Falco, V. (ed.), 1975. [Iamblichi] Theologumena arithmeticae. Stuttgart: 2Teubner. 11922.

11. Diels, H., 1912. Die Fragmente der Vorsokratiker, Griechisch und Deutsch. Dritte Auflage, erster Band. Berlin: Weidmann.

12. Dupuis, J. (ed., trans.), 1892. Théon de Smyrne, philosophe platonicien, Exposition des connaissances mathématiques utiles pour la lecture de Platon. Traduite pour la première fois du grec en français. Paris: Hachette.

13. Fowler, D. H., & E. Robson, 1998. Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context. Historia Mathematica 25, 366–378.

14. Friedlein, G. (ed.), 1873. Procli Diadochi In primum Euclidis Elementorum librum commentarii. Leipzig: Teubner.

15. Heath, T. L., 1921. A History of Greek Mathematics. 2 vols. Oxford: The Clarendon Press.

16. Heath, T. L. (ed., trans.), 1926. The Thirteen Books of Euclid's Elements. 2nd revised edition. 3 vols. Cambridge: Cambridge University Press/ New York: Macmillan.

17. Heiberg, J. L. (ed., trans.), 1912. Heronis Definitiones cum variis collectionibus. Heronis quae feruntur Geometrica. Leipzig: Teubner.

18. Heiberg, J. L. (ed., trans.), 1914. Heronis quae feruntur Stereometrica et De mensuris. Leipzig: Teubner.

19. Høyrup, J., 1990a. Sub-Scientific Mathematics. Observations on a Pre-Modern Phenomenon. History of Science 28, 63–86.

20. Høyrup, J., 1990b. Sub‑scientific Mathematics: Undercurrents and Missing Links in the Mathematical Technology of the Hellenistic and Roman World. Filosofi og videnskabsteori på Roskilde Universitetscenter. 3. Række: Preprints og Reprints 1990 nr. 3. To appear in Aufstieg und Niedergang der römischen Welt, II vol. 37,3 (if, by miracle, that volume is ever going to appear). Manuscript available from‌‌‌‌1990%7bg%7d‌_‌‌Undercurrents.PDF.

21. Høyrup, J., 1997a. Mathematics, Practical and Recrea­tional, pp. 660–663 in Helaine Selin (ed.), Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Dordrecht etc.: Kluwers.

22. Høyrup, J., 1997b. Hero, Ps.-Hero, and Near Eastern Practical Geometry. An Investi­gation of Metrica, Geometrica, and other Treatises, pp. 67–93 in Klaus Döring, Bernhard Herzhoff & Georg Wöhrle (eds), Antike Naturwissen­schaft und ihre Rezeption, Band 7. Trier: Wissenschaftlicher Verlag Trier.

23. Høyrup, J., 2001. On a Collection of Geometrical Riddles and Their Role in the Shaping of Four to Six ‘Algebras’. Science in Context 14, 85–131.

24. Høyrup, J., 2002. Seleucid Innovations in the Babylonian ‘Algebraic’ Tradition and Their Kin Abroad, pp. 9–29 in Yvonne Dold-Samplonius et al (eds), From China to Paris: 2000 Years Transmission of Mathematical Ideas. Stuttgart: Steiner.

25. Høyrup, J., 2004. Mahāvīra's Geometrical Problems: Traces of Unknown Links between Jaina and Mediterranean Mathematics in the Classical Ages, pp. 83–95 in Ivor Grattan-Guinness & B. S. Yadav (eds), History of the Mathematical Sciences. New Delhi: Hindustan Book Agency.

26. Høyrup, J., 2007. Jacopo da Firenze's Tractatus Algorismi and Early Italian Abbacus Culture. Basel etc.: Birkhäuser.

27. Høyrup, J., 2009. The Rare Traces of Constructional Procedures in ‘Practical Geometries’, pp. 367–377 in Horst Nowacki & Wolfgang Lefèvre (eds), Creating Shapes in Civil and Naval Architecture. Leiden & Boston: Brill.

28. Jürß, F. (ed., trans.), 2001. Sextus Empiricus, Gegen die Wissenschaftler, Buch 1–6. Würzburg: Königshausen & Neumann.

29. Krasnova, S. A. (ed., trans.), 1966. Abu-l-Vafa al-Buzdžani, Kniga o tom, čto neobxodimo remeslenniku iz geometričeskix postroenij, pp. 42–140 in A. T. Grigor'jan & A. P. Juškevič, Fiziko-matematičeskie nauki v stranax vostoka. Sbornik statej i publikacij. Vypusk I (IV). Moskva: Izdatel'stvo »Nauka«.

30. Kroll, W. (ed.), 1899. Procli Diadochi In Platonis Rem publicam commentarii. 2 vols. Leipzig: Teubner, 1899, 1901.

31. MCT: O. Neugebauer & A. Sachs, Mathematical Cuneiform Texts. New Haven, Connecticut: American Oriental Society, 1945.

32. MKT: O. Neugebauer, Mathematische Keilschrift-Texte. I-III. Berlin: Julius Springer, 1935–1937.

33. Morrow, G. R. (ed., trans.), 1970. Proclus, A Commentary on the First Book of Euclid's Elements. Princeton, New Jersey: Princeton University Press.

34. Netz, R., 1999. The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge: Cambridge University Press.

35. Parker, R. A., 1972. Demotic Mathematical Papyri. Providence & London: Brown University Press.

36. Pistelli, H. (ed.), 1975 Iamblichos, In Nicomachi Introductionem Arithmeticam. 2Stuttgart: Teubner. 11894.

37. PL: J. P. Migne (ed.), Patrologiae cursus completus, series latina. 221 vols. Paris, 1844–1864.

38. Sesiano, J., 1998. An Early Form of Greek Algebra. Centaurus 40, 276–302.

39. Sesiano, J., 1999. Sur le Papyrus graecus genevensis 259. Museum Helveticum 56, 26–32.

40. Shelby, L. R. (ed.), 1977. Gothic Design Techniques. The Fifteenth-Century Design Book­lets of Mathes Roriczer and Hanns Schmuttermayer. Carbondale & Edwardsville: Southern Illinois University Press.

41. Shorey, P. (ed., trans.), 1930. Plato, The Republic. 2 vols. London: Heinemann / New York: Putnam, 1930, 1935.

42. Tannery, P. (ed., trans.), 1893. Diophanti Alexandrini Opera omnia cum graecis commen­tariis. 2 vols. Leipzig: Teubner, 1893–1895.

43. Thomas, I. (ed., trans.), 1939. Selections Illustrating the History of Greek Mathematics. 2 vols. London: Heinemann / New York: Putnam, 1939, 1941.

44. Toth, I., 1998. Aristotele e i fondamenti assiomatici della geometria. Prolegomeni alla comprensione dei frammenti non-euclidei nel «Corpus Aristotelicum» nel loro contesto matematico e filosofico. Milano: Vita e Pensiero.

45. Tropfke, J./Vogel, K., et al, 1980. Geschichte der Elementarmathematik. 4. Auflage. Band 1: Arithmetik und Algebra. Vollständig neu bearbeitet von Kurt Vogel, Karin Reich, Helmuth Gericke. Berlin & New York: W. de Gruyter.

46. Vitrac, B. (ed., trans.), 1990. Euclide d'Alexandrie, Les Éléments. Traduits du texte de Heiberg. 4 vols. Paris: Presses Universitaires de France, 1990-2001.

47. Vogel, K., 1936. Beiträge zur griechischen Logistik. Erster Theil. Sitzungsberichte der mathematisch-naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München 1936, 357–472.

48. Vogel, K. (ed., trans.), 1968. Chiu chang suan shu. Neun Bücher arithmetischer Technik. Ein chinesisches Rechenbuch für den praktischen Gebrauch aus der frühen Hanzeit (202 v. Chr. bis 9 n. Chr.). Braunschweig: Friedrich Vieweg & Sohn.

49. Waterfield, R. (trans.), 1988. The Theology of Arithmetic. On the Mystical, mathematical and Cosmological Symbolism of the First Ten Number Attributed to Iamblichus. Grand Rapids, Michigan: Phanes.

50. Woepcke, F., 1853. Extrait du Fakhrî, traité d'algèbre par Aboû Bekr Mohammed ben Alhaçan Alkarkhî; précédé d'un mémoire sur l'algèbre indéterminé chez les Arabes. Paris: L'Imprimerie Impériale.

Copyright Info: © 2016, Jens Høyrup, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved