AIMS Mathematics, 2016, 1(2): 144-155. doi: 10.3934/Math.2016.2.144.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Existence and uniqueness of solutions for a conserved phase-field type model

Facult´e des Sciences et Techniques, Universit´e Marien Ngouabi, BP.69 Brazzaville, Congo

In this paper, we study the existence and the uniqueness of solutions of a conserved phasefield model in a bounded and smooth domain.
  Article Metrics

Keywords Conserved phase-field model; Dirichlet boundary conditions; well-posedness

Citation: Armel Judice Ntsokongo, Narcisse Batangouna. Existence and uniqueness of solutions for a conserved phase-field type model. AIMS Mathematics, 2016, 1(2): 144-155. doi: 10.3934/Math.2016.2.144


  • 1. G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, phys. Rev. B 38 (1988), 789-791.
  • 2. G. Caginalp, The dynamics of conseved phase-field system: Stefan-Like, Hele-Shaw and Cahn- Hilliard models as asymptotic limits, IMA J. Appl. Math. 44 (1990), 77-94.
  • 3. A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl. 400 (2013), 143-152. 4. A.E. Green, P.M. Naghdi, A re-examination of the basic postulates for thermomechanics, Proc. Royal Society London A 432 (1991), 171-194.
  • 5. P. Colli, G. Ggilardi, Ph. Laurenot, and A. Novick-Cohen, uniqueness and long-time behavior for the conserved phase-field system memory, Discrete contin. Dyn. Syst. 5 (1999), 375-390.
  • 6. D. Moukoko, Well-posedness and long time behavior of a hyperbolic Caginal phase-field system, Appl. Anal. Comp. 4 (2014), 151-196.
  • 7. L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and syngular potential, Appl. Math. 54 (2009), 89-115.
  • 8. A. Miranville, R. Quintanilla, A type III phase-field system with a logarithmic potential, Appl. Math. Letters 24 (2011), 1003-1008.
  • 9. A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear. Anal. TMA 71 (2009), 2278-2290.
  • 10. B. Doumbe, Etude de modeles de champ de phase de type Caginalp, PhD thesis, Universit de Poiters, 2013.
  • 11. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.
  • 12. A. Miranville, R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal. 88 (2009), 877-894.
  • 13. G. Caginalp, An analysis of a phase-field model of a free boundary, Arch. Rational Mech. Anal. 92 (1986), 205-245.
  • 14. R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses 32 (2009), 1270-1278.
  • 15. A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Systems Series S 7 (2014), 271-306.
  • 16. P. J. Chen, M. E. Gurtin, andW.O.Williams, A note on non-simple heat conduction, J. Appl. Phys. (ZAMP) 19 (1968), 969-970.
  • 17. A. Miranville, R. Quintanilla, A Caginalp phase-field system based on type III heat conduction with two temperatures, Quart. Appl. Math. 74 (2016), 375-398


This article has been cited by

  • 1. Jean De Dieu Mangoubi, Daniel Moukoko, Fidele Moukamba, Franck Davhys Reval Langa, Existence and Uniqueness of Solution for Cahn-Hilliard Hyperbolic Phase-Field System with Dirichlet Boundary Condition and Regular Potentials, Applied Mathematics, 2016, 07, 16, 1919, 10.4236/am.2016.716157
  • 2. Aymard Christbert Nimi, Daniel Moukoko, Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term, AIMS Mathematics, 2020, 5, 2, 1383, 10.3934/math.2020095

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Narcisse Batangouna, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved