Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

On the viscous Cahn-Hilliard equation with singular potential and inertial term

Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

Special Issues: Nonlinear Evolution PDEs, Interfaces and Applications

We consider a relaxation of the viscous Cahn-Hilliard equation induced by the second-order inertial term utt. The equation also contains a semilinear term f(u) of “singular” type. Namely, the function f is defined only on a bounded interval of R corresponding to the physically admissible values of the unknown u, and diverges as u approaches the extrema of that interval. In view of its interaction with the inertial term utt, the term f(u) is diffcult to be treated mathematically. Based on an approach originally devised for the strongly damped wave equation, we propose a suitable concept of weak solution based on duality methods and prove an existence result.
  Article Metrics

Keywords Cahn-Hilliard equation; inertia; weak formulation; maximal monotone operator; duality

Citation: Riccardo Scala, Giulio Schimperna. On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Mathematics, 2016, 1(1): 64-76. doi: 10.3934/Math.2016.1.64


  • 1. H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.
  • 2. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
  • 3. V. Barbu, P. Colli, G. Gilardi, and M. Grasselli, Existence, uniqueness, and longtime behavior for a nonlinear Volterra integrodifferential equation, Differential Integral Equations, 13 (2000), 1233-1262.
  • 4. V. Barbu, Y. Guo, M.A. Rammaha, and D. Toundykov, Convex integrals on Sobolev spaces, J. Convex Anal., 19 (2012), 837-852.
  • 5. E. Bonetti, E. Rocca, R. Scala, and G. Schimperna, On the strongly damped wave equation with constraint, arXiv:1503.01911, submitted (2015).
  • 6. A. Bonfoh, Existence and continuity of uniform exponential attractors for a singular perturbation of a generalized Cahn-Hilliard equation, Asymptotic Anal., 43 (2005), 233-247.
  • 7. A. Bonfoh, M. Grasselli, and A. Miranville, Large time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation, Math. Methods Appl. Sci., 31 (2008), 695-734.
  • 8. H. Br´ezis, Int´egrales convexes dans les espaces de Sobolev. (French), Israel J. Math., 13 (1972), 9-23.
  • 9. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
  • 10. G. Dal Maso, A. De Simone, and M.G. Mora, Quasistatic evolution problems for linearly elastic-pefectly plastic materials, Arch. Rational Mech. Anal., 180 (2006), 237-291.
  • 11. P. Galenko, Phase-field models with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197.
  • 12. P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125.
  • 13. S. Gatti, M. Grasselli, A. Miranville, and V. Pata, On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230-247.
  • 14. S. Gatti, M. Grasselli, A. Miranville, and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sci., 15 (2005), 165-198.
  • 15. M. Grasselli, H. Petzeltov´a, and G. Schimperna, Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Differential Equations, 239 (2007), 38-60.
  • 16. M. Grasselli, G. Schimperna, and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.
  • 17. M. Grasselli, G. Schimperna, A. Segatti, and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term, J. Evol. Equ., 9 (2009), 371-404.
  • 18. M. Grasselli, G. Schimperna, and S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term, Nonlinearity, 23 (2010), 707-737.
  • 19. M.B. Kania, Global attractor for the perturbed viscous Cahn-Hilliard equation, Colloq. Math., 109 (2007), 217-229.
  • 20. A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.
  • 21. A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965-985.
  • 22. A. Novick-Cohen, On the viscous Cahn-Hilliard equation. In: J.M. Ball ed., Material Instabilities in Continuum Mechanics. Oxford University Press, New York, 329-342.
  • 23. G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.
  • 24. R. Scala, A weak formulation for a rate-independent delamination evolution with inertial and viscosity effects subjected to unilateral constraint, submitted, preprint available at: http://cvgmt.sns.it/paper/2818/ (2015).
  • 25. J. Simon, Compact sets in the space Lp(0; T; B), Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
  • 26. S. Zheng and A.J. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877.
  • 27. S. Zheng and A.J. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations, 209 (2005), 101-139.


This article has been cited by

  • 1. Elena Bonetti, Elisabetta Rocca, Riccardo Scala, Giulio Schimperna, On the strongly damped wave equation with constraint, Communications in Partial Differential Equations, 2017, 1, 10.1080/03605302.2017.1345937
  • 2. Alain Miranville, The Cahn–Hilliard equation and some of its variants, AIMS Mathematics, 2017, 2, 3, 479, 10.3934/Math.2017.2.479
  • 3. Xiaofeng Yang, Jia Zhao, Xiaoming He, Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method, Journal of Computational and Applied Mathematics, 2018, 10.1016/j.cam.2018.04.027
  • 4. Zhenguo Mu, Yuezheng Gong, Wenjun Cai, Yushun Wang, Efficient local energy dissipation preserving algorithms for the Cahn–Hilliard equation, Journal of Computational Physics, 2018, 374, 654, 10.1016/j.jcp.2018.08.004

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Giulio Schimperna, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved