Processing math: 100%
Research article Topical Sections

In-junction-plane beam divergence stabilization by lateral periodic structure in wide-stripe laser diodes

  • Received: 12 August 2019 Accepted: 06 November 2019 Published: 15 November 2019
  • This paper describes the way to stabilize in-junction-plane optical field distribution and emitted beam divergence in high-power 970-nm-band laser diodes (LDs). This is done by introducing a lateral periodic structure into the LD‟s wide-stripe-waveguide, designed to prefer and stabilize the selected (resonant) high-order lateral mode. According to modeling, in CW operation the gain equalization of lateral modes due to thermal index guiding leads to beam divergence stabilization by incorporating the modes up to the resonant one and cutting out higher ones. This was demonstrated experimentally in a wide drive current range. Such stability of a non-Gaussian laser beam profile with steep slopes can be interesting for many applications. Thanks to the drive current flow control by the periodic structure, the effects typical for conventional wide-stripe LDs, such as lateral current crowding, carrier accumulation at stripe edges and optical far-field blooming are not observed.

    Citation: Andrzej Maląg, Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk. In-junction-plane beam divergence stabilization by lateral periodic structure in wide-stripe laser diodes[J]. AIMS Electronics and Electrical Engineering, 2019, 3(4): 370-381. doi: 10.3934/ElectrEng.2019.4.370

    Related Papers:

    [1] Carlos Castillo-Chavez, Bingtuan Li, Haiyan Wang . Some recent developments on linear determinacy. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1419-1436. doi: 10.3934/mbe.2013.10.1419
    [2] Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291
    [3] Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380
    [4] Carlos Castillo-Chavez, Bingtuan Li . Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences and Engineering, 2008, 5(4): 713-727. doi: 10.3934/mbe.2008.5.713
    [5] Cheng-Hsiung Hsu, Jian-Jhong Lin, Shi-Liang Wu . Existence and stability of traveling wavefronts for discrete three species competitive-cooperative systems. Mathematical Biosciences and Engineering, 2019, 16(5): 4151-4181. doi: 10.3934/mbe.2019207
    [6] Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215
    [7] Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120
    [8] Nicolas Bacaër, Cheikh Sokhna . A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences and Engineering, 2005, 2(2): 227-238. doi: 10.3934/mbe.2005.2.227
    [9] Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou . Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences and Engineering, 2018, 15(4): 1033-1054. doi: 10.3934/mbe.2018046
    [10] Hui-Yu Huang, Wei-Chang Tsai . An effcient motion deblurring based on FPSF and clustering. Mathematical Biosciences and Engineering, 2019, 16(5): 4036-4052. doi: 10.3934/mbe.2019199
  • This paper describes the way to stabilize in-junction-plane optical field distribution and emitted beam divergence in high-power 970-nm-band laser diodes (LDs). This is done by introducing a lateral periodic structure into the LD‟s wide-stripe-waveguide, designed to prefer and stabilize the selected (resonant) high-order lateral mode. According to modeling, in CW operation the gain equalization of lateral modes due to thermal index guiding leads to beam divergence stabilization by incorporating the modes up to the resonant one and cutting out higher ones. This was demonstrated experimentally in a wide drive current range. Such stability of a non-Gaussian laser beam profile with steep slopes can be interesting for many applications. Thanks to the drive current flow control by the periodic structure, the effects typical for conventional wide-stripe LDs, such as lateral current crowding, carrier accumulation at stripe edges and optical far-field blooming are not observed.




    [1] Larsson A, Salzman J, Mittelstein M, et al. (1986) Lateral coherence properties of broad-area semiconductor quantum well lasers. J Appl Phys 60: 66-68. doi: 10.1063/1.337629
    [2] Chow WW, Depatie D (1988) Filamentation in conventional double heterostructure and quantum well semiconductor lasers. IEEE J Quantum Elect 24: 1297-1301. doi: 10.1109/3.966
    [3] Chang-Haspain CJ, Kapon E, Colas E (1990) Spatial mode structure of index-guided broad-area quantum-well lasers. IEEE J Quantum Elect 26: 1713-1716. doi: 10.1109/3.60894
    [4] Dente GG (2001) Low confinement factors for suppressed filaments in semiconductors lasers. IEEE J Quantum Elect 37: 1650-1653. doi: 10.1109/3.970913
    [5] Asatsuma T, Takiguchi Y, Frederico S, et al. (2006) Successive phase change and stability of near-field patterns for broad-area laser diodes. High-Power Diode Laser Technology and Applications IV 6104: 61040C.
    [6] Tachikawa T, Takimoto S, Shogenji R, at al. (2010) Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J Quantum Elect 46: 140-149. doi: 10.1109/JQE.2009.2031122
    [7] Wenzel H, Crump P, Ekhteraei H, et al. (2011) Theoretical and experimental analysis of the lateral modes of high-power broad-area lasers. 2011 Numerical Simulation of Optoelectronics Devices: 143-144.
    [8] Crump P, Boldicke S, Schultz CM, et al. (2012) Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers. Semicond Sci Tech 27: 045001. doi: 10.1088/0268-1242/27/4/045001
    [9] Piprek J (2013) Self-consistent far-field blooming analysis for high-power Fabry-Perot laser diodes. Physics and Simulation of Optoelectronic Devices XXI 8619: 861910. doi: 10.1117/12.2004665
    [10] Winterfeldt M, Crump P, Wenzel H, et al. (2014) Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers. J Appl Phys 116: 063103. doi: 10.1063/1.4892567
    [11] Ripper JE, Paoli TL (1970) Optical coupling of adjacent stripe-geometry junction lasers. Appl Phys Lett 17: 371-373.
    [12] Scifres DR, Lindstrom C, Burnham RD, et al. (1983) Phase-locked (GaAl)As Laser diode emitting 2.6 W CW from a single mirror. Electron Lett 19: 169-171.
    [13] Marshall W, Katz J (1986) Direct analysis of gain-guided phase-locked semiconductor laser arrays. IEEE J Quantum Elect 22: 827-832. doi: 10.1109/JQE.1986.1073064
    [14] Chaly VP, Karpov SY, Ter-Martirosyan AL, et al. (1996) Mechanisms of optical confinement in phase-locked laser arrays. Semicond Sci Tech 11: 372-379. doi: 10.1088/0268-1242/11/3/016
    [15] Maximov MV, Shernyakov YM, Novikov II, et al. (2008) High-power low-beam divergence edge-emitting semiconductor lasers with 1- and 20D photonic bandgap crystal waveguide. IEEE J Sel Top Quant 14: 1113-1122. doi: 10.1109/JSTQE.2008.916534
    [16] Sobczak G, Maląg A (2012) Optimization of phase-locked arrays geometry for high-brightness laser systems. Opto-electron Rev 20: 134-137.
    [17] Liu L, Zhang J, Wang Y, et al. (2012) 500-mW CW single-lobe emission from laterally coupled photonic crystal laser arrays. IEEE Photonic Tech Lett 24: 1667-1669. doi: 10.1109/LPT.2012.2209635
    [18] Borruel L, Sujecki S, Rodriguez D, et al. (2003) Beam filamentation and maximum optical power in high brightness tapered lasers. Physics and Simulation of Optoelectronic Devices XI 4986: 423-431. doi: 10.1117/12.474375
    [19] Wenzel H, Crump P, Fricke J, et al. (2013) Suppression of high-order lateral modes in broad-area diode lasers by resonant anti guiding. IEEE J Quantum Elect 49: 1102-1108. doi: 10.1109/JQE.2013.2288002
    [20] Leidner JP, Marciante JR (2012) Beam quality improvement in broad-area semiconductor lasers via evanescent spatial filtering. IEEE J Quantum Elect 48: 1269-1274. doi: 10.1109/JQE.2012.2207881
    [21] Qiao Z, Zhang S, Gao X, et al. (2010) Broad area semiconductor lasers with tailored gain. Laser Physics and Laser Technologies (RCSLPLT) and 2010 Academic Symposium on Optoelectronics Technology (ASOT): 90-92.
    [22] Sun W, Pathak R, Campbell G, et al. (2013) Higher brightness laser diodes with smaller slow axis divergence. High-Power Diode Laser Technology and Applications XI 8605: 8605D.
    [23] Piprek J (2013) Inverse thermal lens effects on the far-field blooming of broad area laser diodes. IEEE Photonic Tech Lett 25: 958-960. doi: 10.1109/LPT.2013.2255590
    [24] Takimoto S, Tachikawa T, Shogenji R, et al. (2009) Control of spatio-temporal dynamics of broad-area semiconductor lasers by strong optical injection. IEEE Photonnic Tech Lett 21: 1051-1053. doi: 10.1109/LPT.2009.2022181
    [25] An H, Xiong Y, Jiang CL, et al. (2014) Methods for slow axis beam quality improvement of high power broad area diode lasers. High-Power Diode Laser Technology and Applications XII 8965: 89650U. doi: 10.1117/12.2040986
    [26] Yanson D, Levy M, Peleg O, et al. (2015) Low-NA fiber laser pumps powered by high-brightness single emitters. High-Power Diode Laser Technology and Applications XIII 9348: 934806.
    [27] Kanskar M, Bao L, Chen Z, et al. (2015) High brightness diodes & fiber-coupled modules. High-Power Diode Laser Technology and Applications XIII 9348: 934804.
    [28] Winterfeldt M, Crump P, Knigge S, et al. (2015) High beam quality in broad area lasers via suppression of lateral carrier accumulation. IEEE Photonic Tech Lett 27: 1809-1812. doi: 10.1109/LPT.2015.2443186
    [29] Liu G, Li J, Fan L, et al. (2017) High power single lateral mode 1050 nm laser diode bar. High-Power Diode Laser Technology XV 10086: 10086Y.
    [30] Rieprich J, Winterfeldt M, Kerneke R, et al. (2018) Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers. J Appl Phys 123: 125703. doi: 10.1063/1.5004503
    [31] Kanskar M, Bai C, Bao L, et al. (2019) High brightness diodes and 600W and 60% efficient fiber-coupled packages enabled by reduced-mode (REM) diodes. High-Power Diode Laser Technology XVII 10900: 109000H.
    [32] Yang JT, Kim Y, Lee JB, et al. (2019) Dependence of high-power laser diode performance on emitter width. High-Power Diode Laser Technology XVII 10900: 109000N.
    [33] Sobczak G, Dąbrowska E, Teodorczyk M, et al. (2014) Improvement of the lateral mode stability in high-power laser diodes by multi-stripe-gain distribution. IEEE J Quantum Elect 50: 890-897. doi: 10.1109/JQE.2014.2359237
    [34] Wang T, Tong C, Wang L, et al. (2016) Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation. Appl Phys Express 9: 112102. doi: 10.7567/APEX.9.112102
    [35] Maląg A, Dąbrowska E, Teodorczyk M, et al. (2012) Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes. IEEE J Quantum Elect 48: 465-471. doi: 10.1109/JQE.2012.2184741
    [36] Tachikawa T, Takimoto S, Shogenji R, et al. (2010) Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J Quantum Elect 46: 140-148. doi: 10.1109/JQE.2009.2031122
    [37] Sobczak G (2015) Improvement of the quality of the beam emitted by edge-emitting laser diodes through the lateral periodicity of heterostructure waveguide. Ph.D. Thesis.
    [38] Kozłowska A, Maląg A, Dąbrowska E, et al. (2012) Thermal properties of high-power diode lasers investigated by means of high resolution thermography. Mat Sci Eng B 177: 1268-1272. doi: 10.1016/j.mseb.2012.02.024
    [39] Talghader J, Smith JS (1995) Thermal-dependence of the refractive-index of GaAs and AlAs measured using semiconductor multilayer optical cavities. Appl Phys Lett 66: 335-337. doi: 10.1063/1.114204
    [40] Maląg A, Sobczak G, Dąbrowska E (2018) Emitted beam stabilization in junction plane by lateral periodic structure in laser diodes emitting at 980 nm. Laser Technology 2018: Progress and Applications of Lasers 10974: 1097404.
    [41] Martin D, Della Casa P, Adam T, et al. (2019) Current spreading suppression by O- and Si-implantation in high power broad area diode lasers. High-Power Diode Laser Technology XVII 10900: 109000M.
  • This article has been cited by:

    1. Yingli Pan, New methods for the existence and uniqueness of traveling waves of non-monotone integro-difference equations with applications, 2020, 268, 00220396, 6319, 10.1016/j.jde.2019.11.030
    2. Bingtuan Li, William F. Fagan, Kimberly I. Meyer, Success, failure, and spreading speeds for invasions on spatial gradients, 2015, 70, 0303-6812, 265, 10.1007/s00285-014-0766-y
    3. Jian Fang, Xiao-Qiang Zhao, Traveling Waves for Monotone Semiflows with Weak Compactness, 2014, 46, 0036-1410, 3678, 10.1137/140953939
    4. Guo Lin, Ting Su, Asymptotic speeds of spread and traveling wave solutions of a second order integrodifference equation without monotonicity, 2016, 22, 1023-6198, 554, 10.1080/10236198.2015.1112383
    5. Jimmy Garnier, Accelerating Solutions in Integro-Differential Equations, 2011, 43, 0036-1410, 1955, 10.1137/10080693X
    6. Haiyan Wang, Bingtuan Li, Carlos Castillo-Chavez, Some recent developments on linear determinacy, 2013, 10, 1551-0018, 1419, 10.3934/mbe.2013.10.1419
    7. Frithjof Lutscher, 2019, Chapter 5, 978-3-030-29293-5, 53, 10.1007/978-3-030-29294-2_5
    8. Jian Fang, Xiao-Qiang Zhao, Monotone wavefronts of the nonlocal Fisher–KPP equation, 2011, 24, 0951-7715, 3043, 10.1088/0951-7715/24/11/002
    9. Kimberly I. Meyer, Bingtuan Li, A Spatial Model of Plants with an Age-Structured Seed Bank and Juvenile Stage, 2013, 73, 0036-1399, 1676, 10.1137/120880501
    10. Yingli Pan, Ying Su, Junjie Wei, Accelerating propagation in a recursive system arising from seasonal population models with nonlocal dispersal, 2019, 267, 00220396, 150, 10.1016/j.jde.2019.01.009
    11. Bingtuan Li, Multiple invasion speeds in a two-species integro-difference competition model, 2018, 76, 0303-6812, 1975, 10.1007/s00285-017-1200-z
    12. Fuzhen Wu, Propagation threshold in an integrodifference predator–prey system of Leslie–Gower type, 2021, 27, 1023-6198, 26, 10.1080/10236198.2020.1862809
    13. Yu Jin, Mark A. Lewis, Seasonal influences on population spread and persistence in streams: spreading speeds, 2012, 65, 0303-6812, 403, 10.1007/s00285-011-0465-x
    14. Weiwei Ding, Xing Liang, Principal Eigenvalues of Generalized Convolution Operators on the Circle and Spreading Speeds of Noncompact Evolution Systems in Periodic Media, 2015, 47, 0036-1410, 855, 10.1137/140958141
    15. Adèle Bourgeois, Victor LeBlanc, Frithjof Lutscher, Spreading Phenomena in Integrodifference Equations with Nonmonotone Growth Functions, 2018, 78, 0036-1399, 2950, 10.1137/17M1126102
    16. Jian Fang, Grégory Faye, Monotone traveling waves for delayed neural field equations, 2016, 26, 0218-2025, 1919, 10.1142/S0218202516500482
    17. Jian Fang, Na Li, Chenhe Xu, A nonlocal population model for the invasion of Canada goldenrod, 2022, 19, 1551-0018, 9915, 10.3934/mbe.2022462
    18. Jian Fang, Yingli Pan, NonMonotonicity of Traveling Wave Profiles for a Unimodal Recursive System, 2022, 54, 0036-1410, 1669, 10.1137/21M139236X
    19. Yihong Du, Wenjie Ni, The Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry in R3, 2022, 5, 2640-3501, 1, 10.3934/mine.2023041
    20. Bingtuan Li, Garrett Otto, Wave speed and critical patch size for integro-difference equations with a strong Allee effect, 2022, 85, 0303-6812, 10.1007/s00285-022-01814-3
    21. Yihong Du, Wenjie Ni, The High Dimensional Fisher-KPP Nonlocal Diffusion Equation with Free Boundary and Radial Symmetry, Part 1, 2022, 54, 0036-1410, 3930, 10.1137/21M1451920
    22. Xiongxiong Bao, Ting Li, Existence and stability of traveling waves for a competitive-cooperative recursion system, 2020, 2020, 1072-6691, 88, 10.58997/ejde.2020.88
    23. Leyi Jiang, Taishan Yi, Xiao-Qiang Zhao, Propagation dynamics for a class of integro-difference equations in a shifting environment, 2024, 380, 00220396, 491, 10.1016/j.jde.2023.10.053
    24. Teng-Long Cui, Wan-Tong Li, Zhi-Cheng Wang, Wen-Bing Xu, Linear and superlinear spreading speeds of monostable equations with nonlocal delayed effects, 2024, 409, 00220396, 299, 10.1016/j.jde.2024.07.018
    25. Yihong Du, Wenjie Ni, The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, Part 2: Sharp estimates, 2024, 00221236, 110649, 10.1016/j.jfa.2024.110649
    26. Weiwei Ding, Xiao Li, Xing Liang, Time-periodic traveling waves and propagating terraces for multistable equations with a fractional Laplacian: An abstract dynamical systems approach, 2024, 00221236, 110711, 10.1016/j.jfa.2024.110711
    27. Wan-Tong Li, Ming-Zhen Xin, Xiao-Qiang Zhao, Spatio-temporal dynamics of nonlocal dispersal systems in time-space periodic habitats, 2025, 416, 00220396, 2000, 10.1016/j.jde.2024.11.001
    28. Na Li, Yingli Pan, Ying Su, Sharp Rate of the Accelerating Propagation for a Recursive System, 2025, 154, 0022-2526, 10.1111/sapm.70029
    29. Renhu Wang, Xuezhong Wang, Propagation dynamics for a competitive-cooperative recursion system with monostable structure, 2025, 04, 2811-0072, 10.1142/S2811007225500026
    30. Teng-Long Cui, Wan-Tong Li, Wen-Bing Xu, Accelerating or not in the spatial propagation of nonlocal dispersal cooperative reducible systems, 2025, 443, 00220396, 113519, 10.1016/j.jde.2025.113519
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5220) PDF downloads(452) Cited by(0)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog